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Assessing the quality of quantum gate implementations is crucial in developing quantum com-
puters [1, 2]. Randomized benchmarking (RB) [3�8] and its many variants [9], such as linear
cross-entropy benchmarking (XEB) [10], are arguably the most widely employed protocols for this
purpose. RB measures the accuracy of random gate sequences of di�erent lengths and reports the
exponential decay rate of the resulting experimental signal with the sequence length. Stronger
noise results in faster decays with smaller decay parameters.

Generally speaking, many experimental signatures can be rather well �tted by an exponential
decay. Experimentally observing an exponential decay in an RB experiment does by itself not
justify the interpretation of the decay parameter as a measure for the quality of the gates. In
addition, RB requires a well-controlled theoretical model that explains the observed decays under
realistic assumptions and provides the desired interpretation of the decay parameters.

RB is theoretically well-understood when the gates in the sequence are drawn uniformly at
random from a compact group. In particular, generalizing the arguments of Refs. [8, 11�14],
Helsen et al. [9] derived general guarantees for the signal form of the entire zoo of RB protocols
with compact groups: If the noise of the gate implementation is su�ciently small (in a precise
sense), each decay parameter is associated with an irreducible representation (irrep) of the group
generated by the gates. To be precise, the decay parameter is the dominant eigenvalue of a
generalized Fourier transform of the noisy implementation. Thus, the decay parameter indeed
quanti�es the average deviation of the gate implementation from their ideal action on the state
subspace carrying the irrep.

In practice, however, the applicability of uniform RB protocols for holistically assessing the
quality of noisy and intermediate-scale quantum (NISQ) hardware is limited. On currently available
hardware, su�ciently long sequences of multi-qubit Cli�ord unitaries, for example, lead to way too
fast decays to be accurately estimated for already moderate qubit counts. More scalable RB
protocols directly draw sequences of local random gates, implementing a random circuit [15, 16].
We refer to those protocols that use a non-uniform probability distribution over a group as non-
uniform RB protocols. The most prominent example of non-uniform RB is the linear XEB protocol
that was used for the �rst demonstration of a quantum computational advantage in sampling tasks
[10, 17].

Establishing theoretical guarantees for non-uniform RB is considerably more subtle. Roughly
speaking, the interpretation of the decay parameter is more complicated as one additionally wit-
nesses the convergence of the non-uniform distribution to the uniform one with the sequence
length�causing a superimposed decay in the experimental data. These obstacles are well-known
in the RB literature [16, 18] and have raised suspicion in the context of linear XEB [19, 20]. If
not carefully considered, one easily ends up signi�cantly overestimating the �delity of the gate
implementation.

The original theoretical analysis of linear XEB relies on the assumption that for every circuit,
one observes an ideal implementation up to global depolarizing noise [10]. Building more trust in
linear XEB has motivated a line of theoretical research, introducing di�erent heuristic estimators
[19]. Moreover, analyzing the behaviour of di�erent noise models in random circuits [21, 22]
using mappings of random circuits to statistical models [23]. However, general guarantees that
work under minimal plausible assumptions on the gate implementation and for random circuits
generating di�erent groups�akin to the framework [9] for uniform RB�are missing.

In this work, we close this gap by developing a general theory of �ltered randomized bench-
marking with random quantum circuits under arbitrary gate-dependent (Markovian and time-
stationary) noise. Besides linear XEB, �ltered RB [9] encompasses character benchmarking [24]
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and Pauli-noise tomography [25], as well as variants of simultaneous [26], and correlated [27] RB
as additional examples. Filtered RB protocols deviate from standard RB by omitting the last gate
that inverts the sequence and instead perform a computational basis measurement. This approach
signi�cantly simpli�es the experimental procedure and is arguably a core requirement for experi-
mentally scalable non-uniform RB. The inverse gate is calculated in the classical post-processing
of the data. At this stage, the experimental data can be additionally �ltered to show only speci�c
decays (associated with an individual irrep) of potentially overlapping decays arising for smaller
groups.

More precisely, we consider a d-dimensional quantum system and a compact group G < U(d)
equipped with a probability measure ν. The group G acts on complex d × d matrices in the
reference representation ω(g) = Ug( · )U†

g . Then, the �ltered RB protocol prepares a �xed initial
state ρ, applies independent and identically distributed gates g1, . . . , gm ∼ ν, and performs a
measurement in a �xed basis Ei := |i⟩⟨i| for i ∈ {1, . . . , d}. Repetitions yield samples of the form

(i(l), g
(l)
1 , . . . , g

(l)
m ). In the post-processing, for an irrep ωλ of ω with dimension dλ, we compute the

empirical mean F̂λ of a �lter function fλ(i, g1, . . . , gm) evaluated on the obtained samples:

F̂λ(m) := 1
N

N∑
l=1

fλ(i(l), g
(l)
1 , . . . , g(l)

m ), fλ(i, g1, . . . , gm) := tr
[
Ei ω(g1 · · · gm)S+Pλ(ρ)

]
.

Here, Pλ is the projector onto the irrep ωλ and S+ is the pseudo-inverse of a frame operator
associated with G and the measurement.

The �ltering allows for a more �ne-grained treatment of the argument at the heart of the
framework of Ref. [9], and an individual analysis for the di�erent irreps of the group G. In this
way, we derive new perturbative bounds based on the harmonic analysis of compact groups that can
be naturally combined with results from the theory of random quantum circuits, thereby treating
uniform and non-uniform RB on the same footing.

Technically, we model the imperfect implementation of gates by introducing an implementation
map ϕ on G such that ϕ(g) is completely positive and trace non-increasing for all g ∈ G. In the
absence of noise, the implementation map should be exactly given by the reference representation
ω of G. We then consider the operator-valued Fourier transform on the compact group G, which,

when applied to ϕ and the measure ν, reads ϕ̂ν[ωλ] =
∫

G
ωλ(g)†( · )ϕ(g) dν(g). We treat this as

a perturbation of the Fourier transform ω̂ν[ωλ] for the ideal implementation ϕ = ω. Crucially,
ω̂ν[ωλ] has the form of a (second-order) moment operator associated with the measure ν, and the
convergence rate of the random circuit generated by ν to the uniform measure on G is controlled
by the spectral gap ∆λ of ω̂ν[ωλ]. Using matrix perturbation theory, we then �nd an explicit
expression for the data form of �ltered RB:

Theorem (Data form of filtered RB, informal). Suppose there is a δλ > 0 such that∥∥ϕ̂ν[ωλ] − ω̂ν[ωλ]
∥∥

∞ ≤ δλ <
∆λ

5 .

Then, E[F̂λ(m)] = tr (AλIm
λ ) + tr (BλOm

λ ) where the matrix Iλ (of the size of the multiplicity of λ)
captures the gate noise, independent of SPAM, and the second term is suppressed as∣∣tr (BλOm

λ )
∣∣ ≤ cλ (1 − ∆λ + 2δλ)m , (1)

with a constant cλ depending on the measurement and SPAM. Typically, we have cλ = O(dλ).

Our guarantee, thus, assumes that the error of the average implementation (per irrep) of only
the gates actually appearing in the random circuit is su�ciently small compared to a irrep-speci�c
spectral gap of the random circuit. Then, the data of �ltered RB is well-described by an exponential
decay tr[AλIm

λ ] if the circuit is su�ciently deep to suppress the second summand, and the largest
eigenvalue of Iλ is the dominant contribution. By Eq. (1), the subdominant terms essentially re�ect
the mixing process of the random circuit with convergence rate 1 − ∆λ. Concretely, we �nd that
the following sequence length is typically su�cient to suppress the subdominant terms by ϵ:

m ≥ 2∆−1
λ

(
log(dλ) + log(1/ϵ) + O(1)

)
. (2)
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We evaluate this bound using results on random quantum circuits to arrive at concrete scalings
of the circuit depth for speci�c examples [28�32]. Explicitly, we discuss the cases of local random
circuit or brickwork circuit with Haar-random unitary gates and Cli�ord generators. We �nd for
practically relevant examples that our result implies that a linear circuit depth in the number of
qubits su�ces for �ltered RB.

Omitting the inverse gate comes at the price that the simple arguments for the sample-e�ciency
of standard RB do no longer apply to �ltered RB. As in state shadow tomography [33], the post-
processing introduces estimators that are, in general, only bounded exponentially in the number
of qubits. Thus, the precise convergence of estimators calculated from polynomially many samples
is a priori far from clear.

Generalizing our perturbative analysis of �ltered RB data to higher moments, we derive general
expressions for the sample complexity of �ltered RB in terms of the corresponding moments of the
noise-free and uniformly random implementation. Again, subdominant terms appear that, however,
become negligible if the sequence length m is chosen large enough. In the worst case, this can mean
a constant overhead compared to Eq. (2), but in many relevant cases the previous bound is already
su�cient. Denote by E[f2

λ]ideal the second moment of the �lter function when the implementation
is noise-free and the gates are drawn uniformly from the group. We prove the following statement.

Theorem (Sampling complexity of filtered RB, informal). Choose the sequence length m such
that the subdominant terms are bounded by κ. If the number of samples fulfills N ≥ (E[f2

λ]ideal +
κ)ε−2δ−1 then the mean estimator F̂λ(m) is ϵ-precise with probability at least δ.

Our result can be summarized as follows: Under essentially the same assumptions that guar-
antee the data form of the protocol, �ltered RB is at least as sample-e�cient as bounds on the
analogous protocol using noise-free, uniformly distributed unitaries. Again important example pro-
tocols are already sample-e�cient using linear circuit depth. Perhaps surprisingly, we �nd that
�ltered RB with single-qubit gates coming from a unitary 3-design (e.g. the Cli�ord group) has
constant sampling complexity irrespective of the size of the non-trivial support of the irreps. This
is in contrast to the related �ndings in state shadow estimation. Interestingly, a similar result
in local dimension q > 2 does not hold. Filtered RB without entangling gates, a general variant
of simultaneous RB, can, therefore, also be used to e�ciently extract crosstalk measures between
more than two-qubits in a simple experiment.

Finally, it is an open question whether the post-processing of �ltered RB can be modi�ed such
that meaningful decay constants can already be extracted from constant depth circuits. In the
context of linear XEB, Ref. [19] introduces a heuristic, so-called `unbiased' estimator to this end
that is also central to the proposal of Ref. [21]. Using the general perspective of �ltered RB, we
sketch two general approaches to construct a modi�ed linear estimator for constant-depth circuits.
The �rst approach introduces a more costly computational task in the classical post-processing.
The second approach requires that the random distribution of circuits is locally invariant under
local Cli�ord gates. We formally argue that these estimators work under the assumption of global
depolarizing noise, putting them at least on the same footing as existing theoretical proposal, but
leave a detailed perturbative analysis to future work.

We expect that our theory of non-uniform �ltered RB can be applied to many more practically
relevant benchmarking schemes and bootstraps the development of new RB schemes. In fact,
one of our main motivations for deriving the �exible theoretical framework is its applications for
the characterization and benchmarking of non-universal and analog quantum computing devices�
consolidating and extending existing proposals [34, 35] in future work.

On a technical level, we develop tools to analyze noisy random circuits using harmonic analysis
on compact groups and matrix perturbation theory. We expect that this perturbative description
�nds applications in quantum computing also beyond the randomized benchmarking of quantum
gates. The tools and results might, in principle, be applicable to analyze the noise-robustness of
any scheme involving random circuits, e.g. randomized compiling [36], shadow tomography and
randomized measurements [37] or error mitigation [38]. As a by-product, our variance bounds
take a more direct representation-theoretic approach working with tensor powers of the adjoint
representation rather than exploiting vector space isomorphisms and invoking Schur-Weyl duality
[33]. We hope that our approach also opens up a complimentary, illuminating perspective on the
sample-e�ciency of estimation protocols based on random sequences of gates more generally.
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