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CHAPTER 1

INTRODUCTION

Quantum information science is the field that studies how information is stored, processed, and trans-
mitted when it is governed by the laws of quantum mechanics. It includes areas such as quantum com-
puting, quantum communication, quantum cryptography, quantum sensing, and quantum error correction.
Although still relatively young, quantum information science has already had a profound impact on
many areas of physics, especially on the study of quantum systems composed of many interacting
particles, commonly referred to as many-body quantum systems.

Within this context, quantum circuits and tensor networks have emerged as essential tools to tackle
fundamental questions in quantum dynamics—from the mechanisms of thermalization and the emer-
gence of statistical mechanics in isolated systems, to the onset of quantum chaos and its deep connections
with black hole physics and holography in quantum gravity. Studying these phenomena in a concrete
setting is notoriously difficult, due to the exponential growth of the Hilbert space and the inherently
non-linear structure of quantum correlations. Random quantum circuits and tensor networks offer a
powerful way to overcome these challenges: they enable analytical and numerical progress through
disorder averaging, while capturing the typical behavior of generic quantum systems thanks to quan-
tum typicality arguments.

Crucially, the interplay between quantum information and many-body physics has not only re-
fined our understanding of traditional problems, but has also uncovered entirely new dynamical
phases of matter – phases that arise uniquely in programmable quantum devices. This so-called syn-
thetic quantum matter cannot be characterized by conventional local order parameters such as magne-
tization or current. Instead, its defining features are quantum informational, such as the structure of
entanglement or nonstabilizer (magic state) resources, or the system’s ability to preserve quantum in-
formation against noise and local errors. Understanding and classifying such phases requires a shift
in perspective –from symmetry and energetics to information content and computational complexity.

At the same time, random unitary dynamics, especially in the form of random quantum circuits,
have become indispensable tools in the NISQ (noisy intermediate-scale quantum) era. They provide
efficient and versatile frameworks for a wide range of applications, including the benchmarking and
verification of quantum computations, the characterization of noise in experimental platforms, and
the estimation of observables via shadow tomography. Far from being purely theoretical constructs,
these methods are implemented across various platforms – from superconducting qubits to cold
atoms – and are central to the ongoing development of near-term quantum technologies.

This course provides a pedagogical introduction to random unitaries and to several key methods
from quantum information theory, with a focus on their application to many-body physics. A sub-
stantial part of the course covers research-level topics introduced only in the past few years, offering
a unique opportunity to engage with current questions at the interface between two rapidly evolving
fields. It is also intended to serve as a solid preparation to pursue a Master’s thesis, a doctorate or
work in the private for these areas.

1.1 Overview

The structure of the course is as follows. We begin with a chapter on permutations and a graphical
calculus, which will provide the foundation for the treatment of randomization methods throughout
the course. We then introduce the core randomization concepts in two parts, Quantum Randomness I
and II—each followed by a chapter that connects the methods to applications in many-body systems.

1. In Quantum Randomness I (Ch. 2), we introduce Weingarten calculus, the central toolbox for
computing averages over the unitary group, which naturally arise when considering statistical
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CHAPTER 1. INTRODUCTION 3

properties of random evolutions. We also study unitary designs, which provide efficient approx-
imations of Haar randomness and play an important role in practical implementations.

2. In Ch. 3, we present the framework of classical shadows. Introduced around 2020, classical shad-
ows offer an efficient way to extract information about quantum states using only a small
number of randomized measurements. This technique has already found widespread use in
experimental platforms and continues to inspire a growing body of research.

3. In Quantum Randomness II (Ch. 4), we explore random quantum circuits in detail. These mod-
els provide an efficient and physically motivated approach to generate randomness in quantum
many-body systems, and they serve as minimal models for chaotic quantum dynamics.

4. In Ch. 5, we show how random circuits can be used to model scrambling, thermalization, and
information spreading in interacting quantum systems. These models also offer connections to
quantum chaos, complexity growth, and typicality in many-body physics.

Each chapter concludes with a short guide to the research literature, primarily in the form of original
articles, allowing students to explore further and connect the course material to current work in the
field.

1.2 Permutations and their combinatorics

Why permutations? A central theme of this course is the study of random unitaries and their ap-
plications in quantum many-body systems. To understand their behavior, we need to analyze the
statistics of random unitaries—specifically, we are interested in computing averages, variances, and
higher moments of functions involving random unitary matrices.

At first glance, this might seem daunting: computing integrals over the unitary group is, in gen-
eral, a highly nontrivial task. However, a powerful insight from representation theory, known as
Schur-Weyl duality, provides a way forward. This duality reveals a deep connection between the action
of the unitary group and the action of the permutation group, which allows us to reformulate complicated
integrals in terms of combinatorics of permutations.

This leads to the framework known as Weingarten calculus, which enables the exact evaluation
of many relevant averages over the unitary group. As a result, permutations will play a key role
throughout this course – not for abstract mathematical reasons, but because they offer a concrete and
computable handle on random quantum processes.

In this section, we will introduce the essential properties of permutations needed for our pur-
poses. While there is a rich and beautiful mathematical structure behind these ideas, we will focus
only on the aspects that are directly relevant for our discussion and applications. The interested
reader can consult the bibliography.

1.2.1 Permutations and Cycles

A permutation is a reordering of a finite set of elements. In this course, we consider permutations of
the set {1, 2, . . . , k}. We will denote permutations by Greek letters such as π, σ, τ, and so on. The set
of all permutations of k elements forms a group under composition, called the symmetric group, and
denoted by Sk.

Given a permutation σ ∈ Sk and an element x ∈ {1, . . . , k}, we write σ(x) to indicate the image of
x under σ. A common and explicit way to write a permutation is the two-line notation, where the first
row lists the original elements and the second row gives their images under the permutation:

σ =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
. (1.1)
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Example 1.2.1: Explicit Notation of Permutations

An example of a permutation of four elements is:

σ =

(
1 2 3 4
3 1 4 2

)
. (1.2)

This means that the permutation acts as:

σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2. (1.3)

The group operation in Sk is the composition of permutations, denoted by σ · τ for σ, τ ∈ Sk, and
defined by

(σ · τ)(x) = σ(τ(x)) for all x ∈ {1, . . . , k}. (1.4)

Note that permutation composition is applied from right to left: τ acts first, followed by σ.

Example 1.2.2: Product of Permutations

Consider the following two permutations of k = 4 elements:

σ =

(
1 2 3 4
3 1 4 2

)
, τ =

(
1 2 3 4
4 2 3 1

)
. (1.5)

To compute the composition (τ · σ)(x) = τ(σ(x)), we apply σ first and then τ:

σ(1) = 3, τ(σ(1)) = τ(3) = 3,
σ(2) = 1, τ(σ(2)) = τ(1) = 4,
σ(3) = 4, τ(σ(3)) = τ(4) = 1,
σ(4) = 2, τ(σ(4)) = τ(2) = 2.

(1.6)

Putting everything together, we find:

τ · σ =

(
1 2 3 4
3 4 1 2

)
. (1.7)

It is important to emphasize that for k ≥ 3, the symmetric group Sk is non-abelian, meaning that
the order of composition matters – in general, σ · τ ̸= τ · σ.

Exercise 1.1. Consider the permutations from Example 1.2.2. Compute the product σ · τ, and verify that it
differs from τ · σ.

The symmetric group contains a special element called the identity permutation, denoted by ι,
which leaves all elements unchanged:

ι =

(
1 2 . . . k
1 2 . . . k

)
. (1.8)

By definition, composition with the identity does not change the permutation:

ι · σ = σ = σ · ι. (1.9)

Moreover, every permutation σ ∈ Sk has an inverse σ−1 such that:

σ · σ−1 = ι = σ−1 · σ. (1.10)

To compute the inverse of a permutation π, for each index i ∈ {1, 2, . . . , k} we set π−1(π(i)) = ι(i) =
i. The resulting list π−1 is the inverse permutation.
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Example 1.2.3: Inverse of a Permutation

Consider the following two permutations of k = 5 elements:

σ =

(
1 2 3 4 5
3 5 1 2 4

)
. (1.11)

To compute the inverse σ−1 we use the rule σ−1(σ(i)) ≡ i

σ(1) = 3 ⇒ σ−1(3) = 1

σ(2) = 5 ⇒ σ−1(5) = 2

σ(3) = 1 ⇒ σ−1(1) = 3

σ(4) = 2 ⇒ σ−1(2) = 4

σ(5) = 4 ⇒ σ−1(4) = 5

(1.12)

Reordering the list in terms of the argument, we find

σ−1 =

(
1 2 3 4 5
3 4 1 5 2

)
. (1.13)

A cyclic permutation, or simply a cycle, is a specific type of permutation in which a subset of ele-
ments is permuted in a closed loop, while all remaining elements remain fixed. Formally, an l-cycle
is a permutation that permutes r elements cyclically and leaves the other k − l elements unchanged.
The number l is called the length of the cycle.

Concretely, a cycle of length l means that there exists a subset {i1, i2, . . . , il} ⊂ {1, 2, . . . , k} such
that

σ(i1) = i2, σ(i2) = i3, . . . , σ(il−1) = il , σ(il) = i1, (1.14)

and for all other elements x /∈ {i1, . . . , il}, we have σ(x) = x.

Exercise 1.2 (Cyclic permutations). The following are examples of cyclic permutations:

τ =

(
1 2 3 4
2 3 4 1

)
, σ =

(
1 2 3 4 5
4 2 1 3 5

)
. (1.15)

Can you identify the subset {a1, . . . , al} that is cyclically permuted in each case? What is the length l of each
cycle? [Answer: For τ, r = l; for σ, r = l.]

One fundamental property of cycles is that any permutation can be decomposed into a product of
disjoint cycles. That is, for any σ ∈ Sk, there exists a unique set of cycles that act on mutually disjoint
subsets of {1, 2, . . . , k}. This decomposition is unique up to the order in which the cycles are written.
This motivates the cycle notation of permutations:

σ = (a1 a2 . . . aj1)(aj1+1 aj1+2 . . . aj2) . . . (ajr−1+1 ajr−1+2 . . . ajr) . (1.16)

Here, each tuple represents a cycle, and all elements am are drawn from {1, 2, . . . , k} without repeti-
tion. The integer r = #(σ) denotes the number of disjoint cycles in the decomposition of σ.

Let us now describe an explicit algorithm to obtain the cycle decomposition of a permutation, as
in Eq. (1.16). The idea is simple: we iteratively follow the action of the permutation until we return
to the starting point, keeping track of all visited elements.

(i) Start from the smallest unvisited element. Initially, this is x = 1. If 1 has already been included
in a previous cycle, move to the next smallest unvisited element.
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(ii) Construct a cycle by iterating the permutation. Begin by writing down x. Then repeatedly
apply the permutation π to generate the sequence

x, π(x), π(π(x)), π(π(π(x))), . . .

Continue this process until you return to the starting point x. The list of elements

(x π(x) π2(x) . . . π j−1(x)) (1.17)

forms a cycle of length j. Mark all of these elements as visited.

(iii) Repeat the process. Find the next smallest unvisited element and return to step (ii). Continue
until all elements have been visited. The full cycle decomposition of π is then obtained by
combining the individual cycles found in each iteration.

Example 1.2.4: Cycle decomposition

Consider the permutation

τ =

(
1 2 3 4 5
4 5 3 1 2

)
. (1.18)

We apply the cycle decomposition algorithm step by step:

• Start with 1:
1 τ7−→ 4 τ7−→ 1.

This gives the first cycle: (1 4). Mark 1 and 4 as visited.

• Next smallest unvisited element is 2:

2 τ7−→ 5 τ7−→ 2.

This gives the second cycle: (2 5). Mark 2 and 5 as visited.

• The last unvisited element is 3, and since

3 τ7−→ 3,

this is a fixed point (a 1-cycle), written as (3).

Combining the above, the full cycle decomposition is:

τ = (1 4)(2 5)(3). (1.19)

Note that the order in which disjoint cycles are written is irrelevant. For instance, in Example 1.2.4,
all of the following represent the same permutation:

τ = (1 4)(2 5)(3) = (2 5)(1 4)(3) = (3)(1 4)(2 5).

When the total number of elements k is clear from the context (e.g., k = 5 in this case), it is common
to omit one-cycles, also denoted fixed points, because these elements are understood to remain un-
changed under the permutation. Using this convention, the permutation in Example 1.2.4 is simply
written as:

τ = (1 4)(2 5). (1.20)

With this notation, the identity permutation is denoted by ι = (), which is shorthand for ι =
(1)(2) · · · (k) – that is, all elements are fixed.
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The cycle structure of a permutation, denoted by λ(π), is the list of the lengths of its disjoint
cycles. For example, the permutation τ = (1 4)(2 5) has cycle structure λ(τ) = (2, 2, 1). The number
of disjoint cycles is then given by the length of this list:

#(π) = |λ(π)|, for any π ∈ Sk . (1.21)

Example 1.2.5: Cycle Structure

Consider the following permutations of 6 elements

τ =

(
1 2 3 4 5 6
5 4 1 6 3 2

)
, σ =

(
1 2 3 4 5 6
5 2 6 4 1 3

)
. (1.22)

It is a simple exercise to show that their cycle decomposition is τ = (1, 5, 3)(2, 4, 6) and
σ = (1, 5)(3, 6) [which is a shorthand notation for σ = (1, 5)(3, 6)(2)(4)]. The permuta-
tion τ has two cycles of length 3, hence the cycle structure is λ(τ) = (3, 3). Instead, σ is
composed of two 2-cycles and two 1-cycles, so the cycle structure is λ(σ) = (2, 2, 1, 1).

Exercise 1.3. Show that conjugation preserves the cycle structure of a permutation. That is, for any σ, π ∈ Sk,
prove that

λ(πσπ−1) = λ(σ).

Transpositions, also known as swaps, are a special class of permutations that exchange exactly two
elements and leave all others unchanged. A transposition has the form:

σ = (i j) =
(

1 . . . i . . . j . . . k
1 . . . j . . . i . . . k

)
. (1.23)

It is straightforward to verify that any permutation can be written as a product of transpositions.
However, unlike the decomposition into disjoint cycles, this representation is not unique – a given
permutation can be written in many different ways as a product of transpositions. While this makes
the transposition decomposition less suitable for labeling permutations, it is extremely useful in alge-
braic manipulations. For instance, it turns out that the number of transpositions in any representation
is always odd or always even, which justifies the definition of the sign of a permutation:

sgn(σ) = (−1)#transpositions in σ . (1.24)

The sign function is important for the construction of representations of Sk and plays an important
role in multilinear algebra, in particular in the definition of the determinant of a matrix.

We conclude this section by reviewing some structural aspects of the symmetric groups Sk for
varying values of k. A key property is that the group Sk naturally embeds into Sk+1: that is, every
permutation of k elements can be viewed as a permutation of k + 1 elements that leaves the (k + 1)-th
element fixed. More formally, we can write

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, 2, . . . , k} , (1.25)

where the union is disjoint and the second term represents all permutations obtained by composing
an element of Sk with a transposition that swaps k + 1 with one of the first k elements.

This recursive structure is useful for establishing many properties of permutations by induction
on k. A simple but important example is the total number of elements in the symmetric group.

Theorem 1.1 (Counting of Permutations). Given k ≥ 1, the total number of permutations in Sk is

| Sk | = k!. (1.26)
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Proof. The total number of permutations is given by the factorial k! = k(k − 1) · · · 2 · 1, with the
convention that 0! = 1. To prove this, we use induction.

For k = 1, the symmetric group S1 = {ι} consists only of the identity permutation, so | S1 | = 1 =
1!.

Assume now that | Sk | = k! for some k ≥ 1. From Eq. (1.25), the next symmetric group can be
written as

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, . . . , k} . (1.27)

There are k possible values of j, and for each j, σ runs over all k! permutations in Sk. Hence,

| Sk+1 | = | Sk |+ k · | Sk | = k! + k · k! = (k + 1) · k! = (k + 1)!. (1.28)

This completes the proof by induction.

Consider now the following permutations of six elements:

σ1 = (1 2 3)(5 6), σ2 = (2 4 6 1), σ3 = (1 2)(3 4)(5 6). (1.29)

While their cycle structures differ, all three permutations have exactly three disjoint cycles. This
illustrates that simply counting the number of cycles is a coarser classification than specifying the
full cycle structure.

In many computations throughout this course, we will be interested in the number of permuta-
tions in Sk with a fixed number of cycles r = #(σ). This quantity is given by the unsigned Stirling
numbers of the first kind, denoted by c(k, r). These numbers satisfy the recursive relation:

c(k + 1, r) = k · c(k, r) + c(k, r − 1), (1.30)

which allows them to be computed inductively, without explicitly listing all permutations. These
numbers form a triangle similar to Pascal’s triangle and are tabulated up to k = 10 in the Appendix.

Starting with the base case k = 1, where S1 = {()}, we find:

c(1, 0) = 0, c(1, 1) = 1. (1.31)

Using the recurrence, the next values for k = 2 are:

c(2, 0) = 0, c(2, 1) = 1, c(2, 2) = 1. (1.32)

Exercise 1.4. Compute the values c(k, r) for 1 ≤ r ≤ k when k = 3 and k = 4. Verify that:

k

∑
r=1

c(k, r) = k! ,
k

∑
r=1

c(k, r)xr = x(x + 1) · · · (x + k − 1) . (1.33)

The first identity reflects the fact that summing over all permutations with a fixed number of cycles r recovers
the total number of permutations in Sk, while the second gives another combinatorial interpretation of c(k, r)
as the coefficients in the power series of the ‘rising factorial’.

1.2.2 The Action of Permutations on Quantum States

Throughout this course, we work with a d-dimensional Hilbert space H = Cd, equipped with the
standard orthonormal basis {|x⟩}d−1

x=0. Our main object of interest is the k-fold tensor product space
H⊗k = (Cd)⊗k, often referred to as the replica space in the many-body literature.

Elements of the symmetric group Sk act naturally on this space by permuting the tensor factors.
Concretely, given a permutation σ ∈ Sk, its action on a product basis state is defined as:

Rσ|x1, x2, . . . , xk⟩ = |xσ−1(1), xσ−1(2), . . . , xσ−1(k)⟩ . (1.34)
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At first, the appearance of the inverse σ−1 might seem counterintuitive. To clarify this, consider an
example with k = 4 and σ = (1 4 3)(2) ∈ S4. Then σ−1 = (1 3 4)(2), and we compute:

Rσ|x1, x2, x3, x4⟩ = |x3, x2, x4, x1⟩ . (1.35)

This matches the effect of applying σ to the tensor slots: the content originally in position j is moved to
position σ(j). To write this as a reordering π(i) of the vector indices i, we discover this permutation
is exactly π(i) = σ−1(i) – thus justifying the use of the inverse in Eq. (1.34).

Equation (1.34) defines a linear (even unitary) operator Rσ on H⊗k. The map

R : Sk −→ U(H⊗k), σ 7→ Rσ (1.36)

is a so-called group representation of Sk. This means it respects the group structure of Sk, more specifi-
cally:

Rπσ = RπRσ, Rσ−1 = R−1
σ , R†

σ = R−1
σ . (1.37)

These properties follow directly from the definition in Eq. (1.34). As an explicit verification of the
composition law, let us define x̃i := xσ−1(i) and compute:

RπRσ|x1, x2, . . . , xk⟩ = Rπ|xσ−1(1), . . . , xσ−1(k)⟩ = |x̃π−1(1), . . . , x̃π−1(k)⟩ (1.38)

= |x(σπ)−1(1), . . . , x(σπ)−1(k)⟩ = Rπσ|x1, x2, . . . , xk⟩. (1.39)

This confirms that Rπσ = RπRσ, and also illustrates why the inverse in Eq. (1.34) is necessary: without
it, the ordering of composition would be reversed, which is not consistent with the group structure.

We leave the verification of the other axioms – such as unitarity and inverse consistency – as an
exercise.

Exercise 1.5. Verify that R defines a unitary representation of the symmetric group Sk, i.e., check Eq. (1.37).

Exercise 1.6. Show that permutations act on tensor products of operators as follows:

Rσ(A1 ⊗ A2 ⊗ · · · ⊗ Ak)R†
σ = Aσ−1(1) ⊗ Aσ−1(2) ⊗ · · · ⊗ Aσ−1(k). (1.40)

Hint: Apply both sides to a product basis state.

Composite Systems In practice, we often work with multi-qudit systems described by a Hilbert space
of the form H = (Cq)⊗n, corresponding to n qudits of local dimension q. In this setting, the k-fold
copy of the system is given by the tensor product

((Cq)⊗n)⊗k, (1.41)

which can be naturally visualized as a k × n grid of qudits (see Fig. 1.1). Each row represents one
replica of the full system, and each column represents the k copies of a single local qudit.

Quantum operations such as global unitaries typically act row-wise, that is, identically and inde-
pendently on each copy. Such operations are of the form

U⊗k, where U ∈ U((Cq)⊗n), (1.42)

meaning that the unitary acts in parallel across the k rows.
In contrast, permutations act by permuting the rows, i.e., the k copies of each local qudit. This

operation is performed column-wise, and can be implemented by applying the same permutation
operator to each column in parallel. This leads to a convenient factorized structure: if we reinterpret
the total space via the isomorphism

((Cq)⊗n)⊗k ≃ ((Cq)⊗k)⊗n, (1.43)

then the permutation operator Rπ acting on the full system decomposes as

Rπ = r⊗n
π , (1.44)

where rπ acts on the k-dimensional replica space associated with each local qudit. This “horizon-
tal” factorization is exactly what is depicted in Fig. 1.1 and will be essential in constructing efficient
representations of randomized operations throughout the course.
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= Cq

U

rπ

× k

× n

Figure 1.1: The Hilbert space ((Cq)⊗n)⊗k de-
picted as a k×n grid where every point corre-
sponds to a copy of Cq. Unitaries U ∈ U(qn)
act row-wise on the grid, while permutations
π ∈ Sk act column-wise.

Traces Traces will play a fundamental role for explicit computations. Here, we derive a formula
for the trace of permutation operators and for the trace of a product operator multiplied with a
permutation. Let us first consider the cyclic permutation γ = (1, 2, . . . , k). Then, we compute

tr(Rγ) =
d−1

∑
x1,...,xk=0

⟨x1, . . . , xk |Rγ |x1, . . . , xk⟩

= ∑
x1,...,xk

⟨x1, . . . , xk |xk, x1, . . . , xk−1⟩ = ∑
x1,...,xk

δx1,xk . . . δxk ,xk−1 = d. (1.45)

Next, consider an arbitrary permutation σ. Then, we can find a permutation π such that πσπ−1 =
(1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) where r = #σ is the number of cycles in
σ (recall that the cycle structures of σ and πσπ−1 have to necessarily match, cf. Ex. 1.3). But Rπσπ−1

is simply a tensor product of cyclic permutations on H⊗b1 , . . . ,H⊗(b2−b1), . . . ,H⊗(br−br−1) and thus

tr(Rσ) = tr(Rπσπ−1) =
r

∏
i=1

d = dr = d#σ . (1.46)

Beyond this simple situation, we often need to compute the trace of product operators multiplied
with a permutation operator, i.e. an expression of the form tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ). Here, we can
follow the same arguments as above: First, if σ = γ = (1, . . . , k) is the cyclic permutation, then

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRγ) = ∑
x1,...,xk

⟨x1, . . . , xk |A1 ⊗ A2 ⊗ · · · ⊗ Ak |xk, x1, . . . , xk−1⟩ (1.47)

= ∑
x1,...,xk

(A1)x1,xk(A2)x2,x1 · · · (Ak)xk ,xk−1 = tr(Ak Ak−1 · · · A1). (1.48)

Next, for an arbitrary σ = (a1, . . . , aj1)(aj1+1, . . . , aj2) . . . (ajr−1+1, . . . , ak), find again a permutation π

that ‘orders the cycles’ as πσπ−1 = (1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) and
then use Ex. 1.6 to conclude that

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ) = tr(Aπ−1(1) ⊗ · · · ⊗ Aπ−1(k)Rπσπ−1) (1.49)

= tr(Aπ−1(b1)
· · · Aπ−1(1)) · · · tr(Aπ−1(br) · · · Aπ−1(br−1+1)) (1.50)

= tr(Aaj1
· · · Aa1) · · · tr(Aak · · · Aar−1+1). (1.51)

For the important case when A1 = A2 = · · · = Ak, the final result is simplified to

tr(A⊗kRσ) = ∏
c∈λ(σ)

tr(Ac), (1.52)

where λ(σ) is the cycle structure of the permutation σ.
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Symmetric subspace Throughout this course, symmetries under permutations will be a fundamen-
tal role, in particular the subspace of (Cd)⊗k composed of vectors that are left invariant by permuta-
tions:

Symk,d ≡ Sym((Cd)⊗k) := {ψ ∈ (Cd)⊗k | Rσ|ψ⟩ = |ψ⟩ ∀σ ∈ Sk} . (1.53)

We will now show that the projector onto Symk,d is

PSym,k,d =
1
k! ∑

σ∈Sk

Rσ . (1.54)

To see this, we first check that PSym,k,d is an orthogonal projector:

P2
Sym,k,d =

1
(k!)2 ∑

σ,π∈Sk

Rσπ . =
1
k! ∑

σ∈Sk

1
k! ∑

τ∈Sk

Rτ = PSym,k,d , (1.55)

P†
Sym,k,d =

1
k! ∑

σ∈Sk

Rσ−1 =
1
k! ∑

π∈Sk

Rπ = PSym,k,d , (1.56)

where we substituted variables as τ = σπ and π = σ−1, respectively, and used that the sum is
invariant under the change of variables. Next, note that for all ψ ∈ Symk,d:

PSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rσ|ψ⟩ =
1
k! ∑

σ∈Sk

|ψ⟩ = |ψ⟩ , (1.57)

thus, Symk,d is in the range of PSym,k,d. Moreover, if PSym,k,d|ψ⟩ = |ψ⟩, then

Rπ|ψ⟩ = RπPSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rπσ|ψ⟩ =
1
k! ∑

τ∈Sk

Rτ|ψ⟩ = PSym,k,d|ψ⟩ = |ψ⟩ , (1.58)

and thus the range of PSym,k,d is exactly Symk,d. We can now compute the dimension of the symmetric
subspace using Eq. (1.46) and Ex. 1.4 as

dim Symk,d = tr PSym,k,d =
1
k! ∑

σ∈Sk

d#σ =
1
k!

k

∑
r=1

c(k, r)dr =
d(d + 1) · · · (d + k − 1)

k!
=

(
d + k − 1

k

)
.

(1.59)

Graphical representation While the above methodologies are generic and straightforward, the al-
gebra is often cumbersome. For this reason, it is useful to introduce a graphical notation to represent
permutation. Similar to the Feynman diagrammatics for perturbative expansions, this is simply a
bookkeeping of the operation previously described.

We denote permutations as lines connecting the list {1, 2, . . . , k} to the output {σ(1), σ(2), . . . , σ(k)}.
For example, given τ = (12)(35)(4) a 5 elements permutation, we can represent it as

(12)(35)(4) ∼=

1

2

3

4

5

(1.60)
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This notation is particularly useful, since it makes computing products particularly easy. For exam-
ple, the product of τ with σ = (123)(4)(5), we simply need to follow the lines after connecting them,
specifically

σ · τ ∼=

1

2

3

4

5

∼=

1

2

3

4

5

∼= (235)(1)(4) (1.61)

Since the group structure is the same for the representations of Sk, we can use the same notation also
for the operators {Rσ : σ ∈ Sk}. For representations, the diagrammatic notation allows also to include
traces and product by operators.

Traces require to add a curve that connect initial and final endpoints. For example:

tr(Rσ) = = ( )
#(σ)

= D#(σ). (1.62)

Similarly, for operators we have

tr(A⊗kRσ) =
A

A

A

A

A

= tr(A3)tr(A)2 (1.63)

1.3 Further reading

To be completed.



CHAPTER 2

QUANTUM RANDOMNESS I

2.1 What is a Haar measure?

On the real line R, there is a unique measure dx with the following properties:

d(x + y) = dx (invariance) ,
∫ 1

0
dx = 1 (unit volume) . (2.1)

It is the measure which we typically associate with a uniform distribution, as the invariance property
guarantees that no point is preferred over another. Note that we cannot make this a probability
measure on all of R as it is non-compact and thus infinite measure. Here, we choose the interval [0, 1]
for normalization and in this context dx is also called the Lebesque measure.

It turns out, that we can define a similar, invariant measure as long as the underlying set has
a suitable group structure.1 This invariant measure is called the Haar measure. Luckily, almost all
groups we encounter are suitable; In particular, the unitary group U(d) is. The Haar measure dU on
U(d) is then the unique measure such that

d(UV) = dU = d(VU) (left/right invariance) ,
∫

U(d)
dU = 1 (unit volume) . (2.2)

In principle, integration over the Haar measure can be done using a suitable parametrization of
unitaries. However, this is quite cumbersome and does not scale nicely with the dimension d. We
will thus discuss smarter ways of integration in the next section.[

[ MH: examples, S1, discrete groups ]
]

To capture typical behaviour of quantum dynamics, we will often draw unitaries ‘uniformly at
random’. Moreover, we will also see a few examples, where randomizing over unitaries can help in
extracting information from a quantum system. In any case, uniform sampling refers to sampling
from the probability measure dU. We also call such unitaries Haar-random.

Likewise, we can talk about Haar-random states. Although the set of states does not form a group,
it is invariant under the unitary group in the sense that U|ψ⟩ is another valid state. One can show
that there is again a unique, unitarily invariant probability measure on the set of states, and a sample
from this measure has the form U|ψ⟩ for a fixed state |ψ⟩ and a Haar-random U.

2.2 Haar integration and Weingarten calculus

In this section, we lay the foundations to compute integrals of the form

Mk(A) :=
∫

U(d)
U⊗k AU⊗k,†dU . (2.3)

As we will say in the later sections, these integrals are of fundamental importances for many appli-
cations in quantum information theory and many-body physics. To compute (2.3), we make use of
the fact Mk(A) lies in the subspace of operators that commute with U⊗k, the so-called commutant. A
deep result in representation theory, the Schur-Weyl duality, states that a basis of this commutant is
given by permutations, which will eventually allow us to compute Mk using Weingarten calculus.

1To be mathematically precise, G should be a compact Hausdorff group.

13
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2.2.1 The unitary commutant

In this section, we study the subspace of operators that commute with U⊗k, which we call the (k-fold)
commutant of U(d):

Commk = {A ∈ L(H⊗k) |U⊗k A = AU⊗k ∀U ∈ U(d)} . (2.4)

We care about this because of the following, elementary observation:

Lemma 2.1. Mk(A) ∈ Commk for all A ∈ L(H⊗k). In fact, every element in Commk is of the form Mk(A).

Proof. Clearly, if A commutes with all U⊗k, then Mk(A) = A, i.e. every element in Commk is of the
form Mk(A). Vice versa, if B = Mk(A), then, by the invariance of the Haar measure:

U⊗kBU⊗k,† =
∫

U(d)
(UV)⊗k A(UV)⊗k,†dV =

∫
U(d)

V⊗k AV⊗k,†dV = B , ∀U ∈ U(d) . (2.5)

Thus, B ∈ Commk.

A central step in understanding the commutant is to note that the representation of Sk on H⊗k

introduced in Sec. 1.2.2, this is Rπ|x1, . . . , xk⟩ = |xπ(1), . . . , xπ(k)⟩, clearly commutes with U⊗k. In
representation-theoretic terms, the representations of U(d) and Sk are said to be dual to each other.
This implies that the permutations are contained in the unitary commutant, Rπ ∈ Commk for all
π ∈ Sk. A fundamental result in representation theory, Schur-Weyl duality, even states that every
element in the commutant is a linear combination of permutations. We will only state this result here
and refer for a proof to the literature [tbd].

Theorem 2.1 (Schur-Weyl duality). The k-fold unitary commutant Commk is spanned by {Rσ | σ ∈ Sk}.
Vice versa, the commutant of {Rσ | σ ∈ Sk} is spanned by {U⊗k |U ∈ U(d)}

A natural question to ask is whether the permutations form a basis for the commutant. Intrigu-
ingly, this is the case if the dimension d is large enough:

Lemma 2.2. The set {Rσ | σ ∈ Sk} is linearly independent for d ≥ k .

Proof. We consider the standard basis of Cd, which we here denote as |1⟩, . . . , |d⟩. Since k ≤ d, we can
consider the action of permutations on |1, . . . , k⟩ ∈ (Cd)⊗k:

R(π)|1, . . . , k⟩ = |π(1), . . . , π(k)⟩ . (2.6)

Now, if R(π) and R(σ) would be linearly dependent (π ̸= σ), than so would be the states |π(1), . . . , π(k)⟩
and |σ(1), . . . , σ(k)⟩. However, these are distinct elements from a basis, thus we arrive at a contradic-
tion.

Remark 2.1. In fact, permutations become linearly dependent as soon as k > d. We do not need this statement
in the following, thus we will not treat the proof in the lecture. We however state it here for completeness. We
consider the antisymmetric subspace Altk,d ⊂ (Cd)⊗k which is the joint −1 eigenspace of all transpositions
R((ij)) for (ij) ∈ Sk. The projector onto Altk,d has the general form

PAlt,k,d =
1
k! ∑

π∈Sk

sgn(π)R(π) , (2.7)

where the sign function sgn(π) is given as follows: Decompose π into transpositions only, then count the
number of transpositions needed. If it is even, sgn(π) = 1, else sgn(π) = −1. Now, dim Altk,d = (d

k) = 0
if k > d, and hence PAlt,k,d = 0. This gives a non-trivial linear relation between permutations, i.e. they are
linearly dependent.
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2.2.2 Weingarten calculus

By the previous findings, we can always write Mk(A) as a linear combination

Mk(A) = ∑
π∈Sk

cπ(A)Rπ , (2.8)

for some coefficients cπ(A). Note that taking the trace inner product of Mk(A) with a fixed permuta-
tion R†

σ yields

tr(R†
σMk(A)) =

∫
tr(R†

σU⊗k AU⊗k,†)dU =
∫

tr(U⊗k,†R†
σU⊗k A)dU = tr(R†

σ A) . (2.9)

However, we also have

tr(R†
σ A) = tr(R†

σMk(A)) = ∑
π∈Sk

cπ(A) tr(R†
σRπ) =: ∑

π∈Sk

cπ(A)Gσ,π , (2.10)

where we defined the Gram matrix

Gπ,σ := tr(R†
πRσ) = tr(R†

πRσ) = tr(Rπ−1σ) = d#(π−1σ) . (2.11)

Here, we used that R is a representation to combine the product of permutation operators, and the
trace formula (1.46). Setting aσ := tr(R†

σ A), we can write the above equation in matrix form as
a = Gc, which we could hope to invert to get an expression for the coefficient vector c. Note that
the permutations are not orthogonal with respect to the trace inner product (A |B) = tr(A†B), and
hence the Gram matrix is not simply diagonal. However, we know that the permutations span the
commutant and that Mk(A) lies in the commutant. Hence, the equation a = Gc always has a solution
and it is unique if and only if the permutations form a basis, i.e. iff d ≥ k, which is what will always
assume for the remainder of this course.2 Then, this solution is simply c = G−1a, or put differently,

Mk(A) = ∑
π,σ∈Sk

Wπ,σ tr(R†
σ A)Rπ , (2.12)

where we defined W := G−1, the so-called Weingarten matrix. Knowing the Weingarten matrix allows
us to compute integrals of the form (2.3) using the Weingarten expansion (2.12).

Properties of the Gram and Weingarten matrix The Gram and Weingarten matrix have a substan-
tial structure which directly relates to the representation theory of the symmetric group. We will not
dive into these details in this course, but instead prove some concrete relations. We summarize them
in the following.

Lemma 2.3. The Gram and Weingarten matrix fulfill the following properties.

(a) Gπ,σ and Wπ,σ only depend on π−1σ.

(b) The row and column sums of G are constant:

Gk,d := ∑
σ

Gπ,σ = ∑
π

Gπ,σ =
(d + k − 1)!
(d − 1)!

= d(d + 1) · · · (d + k − 1) . (2.13)

(c) The row and column sums of W are constant:

∑
σ

Wπ,σ = ∑
π

Wπ,σ = G−1
k,d =

(d − 1)!
(d + k − 1)!

. (2.14)

2It is however not terribly complicated to make this work for d < k, see Sec. 2.4.
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Proof. (a) Clearly, Gπ,σ depends only on π−1σ by definition (cf. Eq. (2.11)). Now note that this implies
that G is invariant under simultaneous row and column permutations. Indeed, if Tτ is the permu-
tation matrix acting as Tτ|eπ⟩ = |eτπ⟩, then (T−1

τ GTτ)σ,π = Gτσ,τπ = Gσ,τ. Inverting G = T−1
τ GTτ

yields W = T−1
τ WTτ and thus Wπ,σ = Wτπ,τσ for all τ, in particular Wπ,σ = Wid,π−1σ for τ = π−1. For

(b), we compute

Gk,d = ∑
σ

tr(Rπ−1σ) = ∑
σ

tr(Rσ) = k! tr(PSym,k,d) = k!
(

d + k − 1
k

)
=

(d + k − 1)!
(d − 1)!

. (2.15)

Here, we used that the multiplication by π−1 can be absorbed into the sum (variable change), and
the definition of the projector onto the symmetric subspace, PSym,k,d = 1

k! ∑σ Rσ, and the value of its
trace, cf. Eqs. (1.54) and (1.59). For (c), we note that the definition of W as inverse of G implies

∑
π

Wσ,πGπ,τ = δσ,τ ⇒ 1 = ∑
π,τ

Wσ,πGπ,τ = Gk,d ∑
π

Wσ,π ⇒ ∑
π

Wσ,π = G−1
k,d . (2.16)

Some examples and exercises In the following, we will compute the Weingarten matrix for small
values of k and illustrate the computations of Haar integrals using a number of examples. To this
end, we use that the Gram matrix has a very simple form: It is the trace of a permutation Rτ = R†

πRσ

and we gave an expression for this in Eq. (1.46).

Example 2.2.1: Weingarten matrix for k = 2

Let us consider k = 2. Then we only have two permutations: the identity 1 and the
flip/swap F = (2 1). There is only one non-trivial matrix element, namely G1,F = tr(F) =
d. Hence, the Gram and Weingarten matrices are

G = d2
(

1 d−1

d−1 1

)
, W =

1
d2 − 1

(
1 −d−1

−d−1 1

)
. (2.17)
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Example 2.2.2: Average collision probability

The probability of obtaining the computational basis state x on U|0⟩ is p(x|U) =
|⟨x |U |0⟩|2. A measure of flatness of this distribution is the collision probability:

ZU := ∑
x

p(x|U)2 = ∑
x
|⟨x |U |0⟩|4 . (2.18)

Here, we are interested on how flat this distribution is on average, over Haar-random
unitaries U. Due to the invariance of the Haar measure, we can simply absorb the X gates
that prepare |x⟩ = Xx1 ⊗ · · · ⊗ Xxn |0⟩ =: X(x)|0⟩ into the average:

Z :=
∫

ZUdU = ∑
x

∫
U
|⟨0 |X(x)U |0⟩|4dU = d

∫
U
|⟨0 |U |0⟩|4dU . (2.19)

To compute the integral, we use second-order Weingarten calculus:

Z = d
∫

U
tr(|0⟩⟨0|⊗2U⊗2|0⟩⟨0|⊗2U⊗2,†)dU (2.20)

= d ∑
π,σ∈S2

Wπ,σ tr(R†
σ|0⟩⟨0|⊗2) tr(Rπ|0⟩⟨0|⊗2) (2.21)

= d ∑
π,σ∈S2

Wπ,σ (2.22)

= 2dG−1
2,d = 2d

(d − 1)!
(d + 1)!

=
2

d + 1
. (2.23)

Here, we used Lem. 2.3. Note that we haven’t actually used the exact form of the Wein-
garten matrix from Ex. 2.2.1. In fact, along the same lines we find that the average of
∑x p(x|U)k is

Ik := ∑
x

∫
p(x|U)kdU = k!dG−1

k,d =
k!d!

(d + k − 1)!
. (2.24)

Exercise 2.1. Using Weingarten calculus, compute the operator S := d
∫
(U|0⟩⟨0|U†)⊗2dU .

More properties – approximate orthogonality As stated before, permutations are not trace-orthogonal,
however, their inner products become very small in large dimensions. This is sometimes called the
approximate orthogonality of permutations. In general, the Gramian can be brought into the explicit
form, by noting that the only permutation with exactly k disjoint cycles is the identity:

Gπ,σ = dk
(

δπ,σ + d−1 (1 − δπ,σ)d#(π−1σ)+1−t︸ ︷︷ ︸
:=Aπ,σ

)
, (2.25)

Here, A is a matrix with zero diagonal and entries bounded by one. This allows us to formally invert
G:

W = d−k
(
1+ d−1B

)
, B :=

∞

∑
j=0

(−1)j+1d−j Aj+1 . (2.26)

This means, that both the Gram and Weingarten matrix are diagonally dominant, and that the off-
diagonal entires are suppressed by 1/d. This reflects the fact that permutation become approximately
orthogonal in large dimensions and thus

Mk(A) ≈ d−k ∑
π

tr(R†
π A)Rπ . (large dimensions) (2.27)
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2.3 Approximating the Haar measure: Unitary designs

To be completed.

2.4 Further reading

To be completed.



CHAPTER 3

MEASURING PROPERTIES OF MANY-BODY STATES

3.1 Shadow estimation: Expectation values through randomized
measurements

To be completed.

3.2 Applications

To be completed.
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CHAPTER 4

QUANTUM RANDOMNESS II

4.1 Random quantum circuits

To be completed.
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CHAPTER 5

RANDOM DYNAMICS IN MANY-BODY SYSTEMS

5.1 Entanglement dynamics and membrane picture

To be completed.

5.2 Quantum scrambling in chaotic systems

To be completed.
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APPENDIX A

SOME LINEAR ALGEBRA

This section gives a basic introduction to the linear algebraic concepts used in this course. Most of
this should already be known from linear algebra and quantum mechanics lectures. At this point, the
lectures notes are more detailed than the lecture to achieve a certain self-containement of the notes
and provide a reference for later stages of the course.

A.1 States, operators, superoperators

State space As usual, quantum mechanics is modeled on a Hilbert space H, which we take, in good
quantum info tradition, to be finite-dimensional for the remainder of this course. Hence, we can simply
think of H = Cd with the standard basis |x⟩ labeled by integers x = 0, 1, . . . , d − 1, and the standard
inner product

⟨ψ |φ⟩ =
d−1

∑
x=0

ψ̄x φx , (A.1)

where ψx = ⟨x |ψ⟩ and φx = ⟨x |φ⟩ are the coefficients in the standard basis. Typically, we take
vectors ψ ∈ H to be normalized: ⟨ψ |ψ⟩ = 1.

The notation of the inner product as a ‘bracket’ motivates the popular Dirac or bra-ket notation
which we adopt here: In this context, vectors ψ ∈ H are called kets and written as |ψ⟩. The corre-
sponding bra is a dual vector ⟨ψ| ∈ H∗ and given by the linear form H ∋ φ 7→ ⟨ψ |φ⟩.1 While the pair-
ing between a bra and ket yields the inner product (the ‘bracket’), the pairing between a ket and bra
forms a so-called outer product |ψ⟩⟨φ| which is a linear operator on H that acts as H ∋ χ 7→ |ψ⟩⟨φ |χ⟩.

Linear operators The vector space of all linear operators A : H → H is denoted by L(H). For any
A ∈ H, its adjoint A† is the linear operator for which

⟨ψ |Aφ⟩ = ⟨A†ψ |φ⟩ , ∀ψ, φ ∈ H . (A.2)

If represented in an orthonormal basis, such as the standard basis, the adjoint operator is the conju-
gate transpose matrix, A† = Ā⊤.

Definition A.1. In the following, we define some relevant classes of operators:

• Hermitian (or self-adjoint) operator: A ∈ L(H) such that A† = A. Hermitian operators have only real
eigenvalues and an orthonormal eigenbasis.

• Unitary operator: U ∈ L(H) such that U†U = UU† = 1.

• Positive semi-definite (psd) operator: Hermitian A ∈ L(H) with only non-negative eigenvalues. We
write A ≥ 0.

• Projector: Hermitian P ∈ L(H) such that P2 = P.

• Quantum state: ρ ∈ L(H) such that ρ ≥ and tr ρ = 1. ρ is called pure if it is a projector: ρ2 = ρ.
Pure states have rank one and are of the form ρ = |ψ⟩⟨ψ|.

Finally, the unitaries on H form the unitary group U(H) = U(d).
1In mathematics, this is called the Riesz representation theorem.
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The vector space End(H) of linear operators on H forms a Hilbert space of dimension (dimH) =
d2 in its own right with the Hilbert-Schmidt or trace inner product:

(X |Y) := tr(X†Y). (A.3)

In particular, we can introduce an orthonormal operator basis as a set of operators A1, . . . , Ad2 such
that (Ai |Aj) = δij. We will now introduce an import example of such a basis, the Pauli basis.

Example A.1.1: Pauli basis

Recall the Pauli operators

σ0,1 ≡ X =

(
0 1
1 0

)
, σ1,1 ≡ Y =

(
0 −i
i 0

)
, σ1,0 ≡ Z =

(
1 0
0 −1

)
, (A.4)

which we complement with the identity σ0,0 = 1. Then, the multi-qubit Pauli operators
on H = (C2)⊗n are simply given by all possible tensor products of the single-qubit Pauli
operators, in formula:

σa := σa1,a2 ⊗ · · · ⊗ σa2n−1,a2n , a ∈ Z2n
2 . (A.5)

Pauli operators are orthogonal, (σa |σb) = 2nδa,b . In particular, the normalized Pauli oper-
ators σ̂a = 2−n/2σa form an orthonormal operator basis. Note that Pauli operators can be
generalized to arbitary dimensions and they give rise to an orthonormal operator basis in
any of those.

We leave it as an exercise to show some basic properties of Pauli operators.

Exercise A.1 (Properties of Pauli operators). Using the definition of Pauli operators, Eq. (A.5), show the
following properties:

(a) σ†
a = σa and σ2

a = 1, i.e. the multi-qubit Pauli operators are both Hermitian and unitary.

(b) σaσb ∝ σa+b, where addition is in Z2n
2 , i.e. modulo two.

(c) σaσb = (−1)[a,b]σbσa where [a, b] := ∑n
i=1 aibn+i + an+ibi.

(d) (σa |σb) = 2nδa,b.

Superoperators and quantum channels Following a common nomenclature, we refer to linear
maps ϕ : L(H) → L(H) as superoperators (on H). We call ϕ positivity-preserving or simply posi-
tive iff ϕ(A) ≥ 0 for all A ≥ 0. As it turns out, positive maps are not necessarily positive when we
let them act on a subsystem of a composite system, i.e. if we consider ϕ ⊗ idA for some auxillary
system A. Thus, we say that ϕ is completely positive iff ϕ ⊗ idA is positive for any auxillary system A.
Completely positive maps are the ones which we consider ‘physical’, as the map quantum states to
quantum states. This leads us to the definition of a quantum channel:

Definition A.2 (Quantum channel). A quantum channel is a superoperator ϕ that is completely positive
and trace-preserving, this is ϕ ⊗ idA is positive for any auxillary system A and tr(ϕ(A)) = tr(A) for all
A ∈ L(H). We call ϕ unital iff ϕ(1) = 1.
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Example A.1.2: Quantum channels

Some examples of quantum channels are the following:

• Unitary channels: ϕ(X) = UXU† for U ∈ U(H).

• Mixed-unitary channels: ϕ(X) = ∑i λiUiXU†
i for Ui ∈ U(H), λi ≥ 0, and ∑i λi = 1.

These are convex combinations of unitary channels.

• Dephasing channel: ϕ(X) = ∑x⟨x |X |x⟩|x⟩⟨x|.

• Reset channels: ϕ(X) = tr(X)ρ for a fixed quantum state ρ.

To denote superoperators, it is handy to introduce an ‘operator Dirac notation’ as follows: In
analogy to the usual Dirac notation, we use the Hilbert-Schmidt inner product to define operator kets
and bras by |Y) ≡ Y and (X| : Y 7→ (X |Y). Likewise, we can define outer products |X)(Y| which are
now linear maps on L(H), i.e. superoperators, acting as A 7→ (Y |A)X.

The ‘operator bra-ket notation’ is especially useful to expand a superoperator in an operator basis,
i.e. write down its matrix representation. Typically, we will use the (normalized) Pauli basis in this
context, but any orthonormal basis works similarly. To this end, we observe that id = ∑a|σ̂a )( σ̂a| and
thus

ϕ = ∑
a,b
|σ̂a)(σ̂a |ϕ | σ̂b)(σ̂b| =: ∑

a,b
ϕa,b|σ̂a )( σ̂b| (A.6)

The matrix (ϕa,b)a,b is the representation of ϕ in the Pauli basis. For quantum channels, this matrix
has certain properties, which we here leave as an exercise:

Exercise A.2. Let ϕ be a multi-qubit quantum channel and let (ϕa,b)a,b be its matrix representation in the
Pauli basis. Show that

(a) (ϕa,b)a,b is real.

(b) ϕa,0 = δa,0. If ϕ is unital, it also holds ϕ0,b = δ0,b, hence ϕ ≃
(

1 0
0 ∗

)
.

(c) Suppose ϕ is a Pauli channel, this is ϕ(X) = ∑a λaσaXσ†
a (for convex coefficients λa). Then, (ϕa,b)a,b

is diagonal (use Ex. A.1).

Norms Throughout this paper, we use Schatten p-norms which are defined for any linear map X ∈
L(V ,W) between Hilbert spaces V and W and p ∈ [1, ∞] as

∥X∥p :=
(

tr|X|p
) 1

p
=

(
d

∑
i=1

σ
p
i

) 1
p

, (A.7)

where |X| :=
√

X†X ∈ L(V) and σi ≥ 0 are the singular values of X, i.e. the square roots of the
eigenvalues of the positive semidefinite operator X†X. In particular, we use the trace norm p = 1, the
Hilbert-Schmidt norm p = 2, and the spectral norm p = ∞. The definition of Schatten norms only relies
on the Hilbert space structure of the underlying vector space, thus these norms can be defined for
operators and superoperators alike.

A.2 Non-orthonormal bases

Let ( fi)i∈[d] be a basis of a Hilbert space V . Thus, every v ∈ V has a unique expansion v = ∑i vi fi.
If ( fi)i is orthonormal, then the coefficients vi can be simply expressed as vi = ⟨ fi |v⟩. This can be
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generalized to arbitrary bases by introducing the concept of a dual basis ( f̃i)i which is defined by the
linear system of equations

⟨ f̃i | f j⟩ = δi,j . (A.8)

As ( fi)i is a basis, this system has a unique solution. It is now straightforward to verify that

⟨ f̃i |v⟩ = ∑
j

vj⟨ f̃i | f j⟩ = vi . (A.9)

Moreover, this implies that (
∑

i
| fi ⟩⟨ f̃i|

)
(v) = ∑

i
vi fi = v , (A.10)

for all v ∈ V and hence ∑i| fi ⟩⟨ f̃i| = idV .
The dual basis can be computed using the Gram matrix

Gi,j := ⟨vi |vj⟩ . (A.11)

One can show that G is generally positive semi-definite and since the vi are linearly independent, the
eigenvalues are in fact strictly larger than zero. Hence, it is invertible and we define its inverse as
W := G−1. Then, the dual basis can be expressed as

ṽi := ∑
j

Wi,jvj . (A.12)

Indeed:
⟨ṽi |vj⟩ = ∑

k
Wi,k⟨vk |vj⟩ = ∑

k
Wi,kGk,j = δi,j . (A.13)
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