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CHAPTER 1

INTRODUCTION

Quantum information science is the field that studies how information is stored, processed, and trans-
mitted when it is governed by the laws of quantum mechanics. It includes areas such as quantum com-
puting, quantum communication, quantum cryptography, quantum sensing, and quantum error correction.
Although still relatively young, quantum information science has already had a profound impact on
many areas of physics, especially on the study of quantum systems composed of many interacting
particles, commonly referred to as many-body quantum systems.

Within this context, quantum circuits and tensor networks have emerged as essential tools to tackle
fundamental questions in quantum dynamics—from the mechanisms of thermalization and the emer-
gence of statistical mechanics in isolated systems, to the onset of quantum chaos and its deep connections
with black hole physics and holography in quantum gravity. Studying these phenomena in a concrete
setting is notoriously difficult, due to the exponential growth of the Hilbert space and the inherently
non-linear structure of quantum correlations. Random quantum circuits and tensor networks offer a
powerful way to overcome these challenges: they enable analytical and numerical progress through
disorder averaging, while capturing the typical behavior of generic quantum systems thanks to quan-
tum typicality arguments.

Crucially, the interplay between quantum information and many-body physics has not only re-
fined our understanding of traditional problems, but has also uncovered entirely new dynamical
phases of matter – phases that arise uniquely in programmable quantum devices. This so-called syn-
thetic quantum matter cannot be characterized by conventional local order parameters such as magne-
tization or current. Instead, its defining features are quantum informational, such as the structure of
entanglement or nonstabilizer (magic state) resources, or the system’s ability to preserve quantum in-
formation against noise and local errors. Understanding and classifying such phases requires a shift
in perspective –from symmetry and energetics to information content and computational complexity.

At the same time, random unitary dynamics, especially in the form of random quantum circuits,
have become indispensable tools in the NISQ (noisy intermediate-scale quantum) era. They provide
efficient and versatile frameworks for a wide range of applications, including the benchmarking and
verification of quantum computations, the characterization of noise in experimental platforms, and
the estimation of observables via shadow tomography. Far from being purely theoretical constructs,
these methods are implemented across various platforms – from superconducting qubits to cold
atoms – and are central to the ongoing development of near-term quantum technologies.

This course provides a pedagogical introduction to random unitaries and to several key methods
from quantum information theory, with a focus on their application to many-body physics. A sub-
stantial part of the course covers research-level topics introduced only in the past few years, offering
a unique opportunity to engage with current questions at the interface between two rapidly evolving
fields. It is also intended to serve as a solid preparation to pursue a Master’s thesis, a doctorate or
work in the private for these areas.

1.1 Overview

The structure of the course is as follows. We begin with a chapter on permutations and a graphical
calculus, which will provide the foundation for the treatment of randomization methods throughout
the course. We then introduce the core randomization concepts in two parts, Quantum Randomness I
and II—each followed by a chapter that connects the methods to applications in many-body systems.

1. In Quantum Randomness I (Ch. 2), we introduce Weingarten calculus, the central toolbox for
computing averages over the unitary group, which naturally arise when considering statistical

2



CHAPTER 1. INTRODUCTION 3

properties of random evolutions. We also study unitary designs, which provide efficient approx-
imations of Haar randomness and play an important role in practical implementations.

2. In Ch. 3, we present the framework of classical shadows. Introduced around 2020, classical shad-
ows offer an efficient way to extract information about quantum states using only a small
number of randomized measurements. This technique has already found widespread use in
experimental platforms and continues to inspire a growing body of research.

3. In Quantum Randomness II (Ch. 4), we explore random quantum circuits in detail. These mod-
els provide an efficient and physically motivated approach to generate randomness in quantum
many-body systems, and they serve as minimal models for chaotic quantum dynamics.

4. In Ch. 5, we show how random circuits can be used to model scrambling, thermalization, and
information spreading in interacting quantum systems. These models also offer connections to
quantum chaos, complexity growth, and typicality in many-body physics.

Each chapter concludes with a short guide to the research literature, primarily in the form of original
articles, allowing students to explore further and connect the course material to current work in the
field.

1.2 Permutations and their combinatorics

Why permutations? A central theme of this course is the study of random unitaries and their ap-
plications in quantum many-body systems. To understand their behavior, we need to analyze the
statistics of random unitaries—specifically, we are interested in computing averages, variances, and
higher moments of functions involving random unitary matrices.

At first glance, this might seem daunting: computing integrals over the unitary group is, in gen-
eral, a highly nontrivial task. However, a powerful insight from representation theory, known as
Schur-Weyl duality, provides a way forward. This duality reveals a deep connection between the action
of the unitary group and the action of the permutation group, which allows us to reformulate complicated
integrals in terms of combinatorics of permutations.

This leads to the framework known as Weingarten calculus, which enables the exact evaluation
of many relevant averages over the unitary group. As a result, permutations will play a key role
throughout this course – not for abstract mathematical reasons, but because they offer a concrete and
computable handle on random quantum processes.

In this section, we will introduce the essential properties of permutations needed for our pur-
poses. While there is a rich and beautiful mathematical structure behind these ideas, we will focus
only on the aspects that are directly relevant for our discussion and applications. The interested
reader can consult the bibliography.

1.2.1 Permutations and Cycles

A permutation is a reordering of a finite set of elements. In this course, we consider permutations of
the set {1, 2, . . . , k}. We will denote permutations by Greek letters such as π, σ, τ, and so on. The set
of all permutations of k elements forms a group under composition, called the symmetric group, and
denoted by Sk.

Given a permutation σ ∈ Sk and an element x ∈ {1, . . . , k}, we write σ(x) to indicate the image of
x under σ. A common and explicit way to write a permutation is the two-line notation, where the first
row lists the original elements and the second row gives their images under the permutation:

σ =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
. (1.1)



CHAPTER 1. INTRODUCTION 4

Example 1.1: Explicit Notation of Permutations

An example of a permutation of four elements is:

σ =

(
1 2 3 4
3 1 4 2

)
. (1.2)

This means that the permutation acts as:

σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2. (1.3)

The group operation in Sk is the composition of permutations, denoted by σ · τ for σ, τ ∈ Sk, and
defined by

(σ · τ)(x) = σ(τ(x)) for all x ∈ {1, . . . , k}. (1.4)

Note that permutation composition is applied from right to left: τ acts first, followed by σ.

Example 1.2: Product of Permutations

Consider the following two permutations of k = 4 elements:

σ =

(
1 2 3 4
3 1 4 2

)
, τ =

(
1 2 3 4
4 2 3 1

)
. (1.5)

To compute the composition (τ · σ)(x) = τ(σ(x)), we apply σ first and then τ:

σ(1) = 3, τ(σ(1)) = τ(3) = 3,
σ(2) = 1, τ(σ(2)) = τ(1) = 4,
σ(3) = 4, τ(σ(3)) = τ(4) = 1,
σ(4) = 2, τ(σ(4)) = τ(2) = 2.

(1.6)

Putting everything together, we find:

τ · σ =

(
1 2 3 4
3 4 1 2

)
. (1.7)

It is important to emphasize that for k ≥ 3, the symmetric group Sk is non-abelian, meaning that
the order of composition matters – in general, σ · τ ̸= τ · σ.

Exercise 1.1. Consider the permutations from Example 1.2. Compute the product σ · τ, and verify that it
differs from τ · σ.

The symmetric group contains a special element called the identity permutation, denoted by ι,
which leaves all elements unchanged:

ι =

(
1 2 . . . k
1 2 . . . k

)
. (1.8)

By definition, composition with the identity does not change the permutation:

ι · σ = σ = σ · ι. (1.9)

Moreover, every permutation σ ∈ Sk has an inverse σ−1 such that:

σ · σ−1 = ι = σ−1 · σ. (1.10)

To compute the inverse of a permutation π, for each index i ∈ {1, 2, . . . , k} we set π−1(π(i)) = ι(i) =
i. The resulting list π−1 is the inverse permutation.
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Example 1.3: Inverse of a Permutation

Consider the following two permutations of k = 5 elements:

σ =

(
1 2 3 4 5
3 5 1 2 4

)
. (1.11)

To compute the inverse σ−1 we use the rule σ−1(σ(i)) ≡ i

σ(1) = 3 ⇒ σ−1(3) = 1

σ(2) = 5 ⇒ σ−1(5) = 2

σ(3) = 1 ⇒ σ−1(1) = 3

σ(4) = 2 ⇒ σ−1(2) = 4

σ(5) = 4 ⇒ σ−1(4) = 5

(1.12)

Reordering the list in terms of the argument, we find

σ−1 =

(
1 2 3 4 5
3 4 1 5 2

)
. (1.13)

A cyclic permutation, or simply a cycle, is a specific type of permutation in which a subset of ele-
ments is permuted in a closed loop, while all remaining elements remain fixed. Formally, an l-cycle
is a permutation that permutes r elements cyclically and leaves the other k − l elements unchanged.
The number l is called the length of the cycle.

Concretely, a cycle of length l means that there exists a subset {i1, i2, . . . , il} ⊂ {1, 2, . . . , k} such
that

σ(i1) = i2, σ(i2) = i3, . . . , σ(il−1) = il , σ(il) = i1, (1.14)

and for all other elements x /∈ {i1, . . . , il}, we have σ(x) = x.

Exercise 1.2 (Cyclic permutations). The following are examples of cyclic permutations:

τ =

(
1 2 3 4
2 3 4 1

)
, σ =

(
1 2 3 4 5
4 2 1 3 5

)
. (1.15)

Can you identify the subset {a1, . . . , al} that is cyclically permuted in each case? What is the length l of each
cycle? [Answer: For τ, r = l; for σ, r = l.]

One fundamental property of cycles is that any permutation can be decomposed into a product of
disjoint cycles. That is, for any σ ∈ Sk, there exists a unique set of cycles that act on mutually disjoint
subsets of {1, 2, . . . , k}. This decomposition is unique up to the order in which the cycles are written.
This motivates the cycle notation of permutations:

σ = (a1 a2 . . . aj1)(aj1+1 aj1+2 . . . aj2) . . . (ajr−1+1 ajr−1+2 . . . ajr) . (1.16)

Here, each tuple represents a cycle, and all elements am are drawn from {1, 2, . . . , k} without repeti-
tion. The integer r = #(σ) denotes the number of disjoint cycles in the decomposition of σ.

Let us now describe an explicit algorithm to obtain the cycle decomposition of a permutation, as
in Eq. (1.16). The idea is simple: we iteratively follow the action of the permutation until we return
to the starting point, keeping track of all visited elements.

(i) Start from the smallest unvisited element. Initially, this is x = 1. If 1 has already been included
in a previous cycle, move to the next smallest unvisited element.
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(ii) Construct a cycle by iterating the permutation. Begin by writing down x. Then repeatedly
apply the permutation π to generate the sequence

x, π(x), π(π(x)), π(π(π(x))), . . .

Continue this process until you return to the starting point x. The list of elements

(x π(x) π2(x) . . . π j−1(x)) (1.17)

forms a cycle of length j. Mark all of these elements as visited.

(iii) Repeat the process. Find the next smallest unvisited element and return to step (ii). Continue
until all elements have been visited. The full cycle decomposition of π is then obtained by
combining the individual cycles found in each iteration.

Example 1.4: Cycle decomposition

Consider the permutation

τ =

(
1 2 3 4 5
4 5 3 1 2

)
. (1.18)

We apply the cycle decomposition algorithm step by step:

• Start with 1:
1 τ7−→ 4 τ7−→ 1.

This gives the first cycle: (1 4). Mark 1 and 4 as visited.

• Next smallest unvisited element is 2:

2 τ7−→ 5 τ7−→ 2.

This gives the second cycle: (2 5). Mark 2 and 5 as visited.

• The last unvisited element is 3, and since

3 τ7−→ 3,

this is a fixed point (a 1-cycle), written as (3).

Combining the above, the full cycle decomposition is:

τ = (1 4)(2 5)(3). (1.19)

Note that the order in which disjoint cycles are written is irrelevant. For instance, in Example 1.4,
all of the following represent the same permutation:

τ = (1 4)(2 5)(3) = (2 5)(1 4)(3) = (3)(1 4)(2 5).

When the total number of elements k is clear from the context (e.g., k = 5 in this case), it is common
to omit one-cycles, also denoted fixed points, because these elements are understood to remain un-
changed under the permutation. Using this convention, the permutation in Example 1.4 is simply
written as:

τ = (1 4)(2 5). (1.20)

With this notation, the identity permutation is denoted by ι = (), which is shorthand for ι =
(1)(2) · · · (k) – that is, all elements are fixed.



CHAPTER 1. INTRODUCTION 7

The cycle structure of a permutation, denoted by λ(π), is the list of the lengths of its disjoint
cycles. For example, the permutation τ = (1 4)(2 5) has cycle structure λ(τ) = (2, 2, 1). The number
of disjoint cycles is then given by the length of this list:

#(π) = |λ(π)|, for any π ∈ Sk . (1.21)

Example 1.5: Cycle Structure

Consider the following permutations of 6 elements

τ =

(
1 2 3 4 5 6
5 4 1 6 3 2

)
, σ =

(
1 2 3 4 5 6
5 2 6 4 1 3

)
. (1.22)

It is a simple exercise to show that their cycle decomposition is τ = (1, 5, 3)(2, 4, 6) and
σ = (1, 5)(3, 6) [which is a shorthand notation for σ = (1, 5)(3, 6)(2)(4)]. The permuta-
tion τ has two cycles of length 3, hence the cycle structure is λ(τ) = (3, 3). Instead, σ is
composed of two 2-cycles and two 1-cycles, so the cycle structure is λ(σ) = (2, 2, 1, 1).

Exercise 1.3. Show that conjugation preserves the cycle structure of a permutation. That is, for any σ, π ∈ Sk,
prove that

λ(πσπ−1) = λ(σ).

Transpositions, also known as swaps, are a special class of permutations that exchange exactly two
elements and leave all others unchanged. A transposition has the form:

σ = (i j) =
(

1 . . . i . . . j . . . k
1 . . . j . . . i . . . k

)
. (1.23)

It is straightforward to verify that any permutation can be written as a product of transpositions.
However, unlike the decomposition into disjoint cycles, this representation is not unique – a given
permutation can be written in many different ways as a product of transpositions. While this makes
the transposition decomposition less suitable for labeling permutations, it is extremely useful in alge-
braic manipulations. For instance, it turns out that the number of transpositions in any representation
is always odd or always even, which justifies the definition of the sign of a permutation:

sgn(σ) = (−1)#transpositions in σ . (1.24)

The sign function is important for the construction of representations of Sk and plays an important
role in multilinear algebra, in particular in the definition of the determinant of a matrix.

We conclude this section by reviewing some structural aspects of the symmetric groups Sk for
varying values of k. A key property is that the group Sk naturally embeds into Sk+1: that is, every
permutation of k elements can be viewed as a permutation of k + 1 elements that leaves the (k + 1)-th
element fixed. More formally, we can write

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, 2, . . . , k} , (1.25)

where the union is disjoint and the second term represents all permutations obtained by composing
an element of Sk with a transposition that swaps k + 1 with one of the first k elements.

This recursive structure is useful for establishing many properties of permutations by induction
on k. A simple but important example is the total number of elements in the symmetric group.

Theorem 1.1 (Counting of Permutations). Given k ≥ 1, the total number of permutations in Sk is

| Sk | = k!. (1.26)
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Proof. The total number of permutations is given by the factorial k! = k(k − 1) · · · 2 · 1, with the
convention that 0! = 1. To prove this, we use induction.

For k = 1, the symmetric group S1 = {ι} consists only of the identity permutation, so | S1 | = 1 =
1!.

Assume now that | Sk | = k! for some k ≥ 1. From Eq. (1.25), the next symmetric group can be
written as

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, . . . , k} . (1.27)

There are k possible values of j, and for each j, σ runs over all k! permutations in Sk. Hence,

| Sk+1 | = | Sk |+ k · | Sk | = k! + k · k! = (k + 1) · k! = (k + 1)!. (1.28)

This completes the proof by induction.

Consider now the following permutations of six elements:

σ1 = (1 2 3)(5 6), σ2 = (2 4 6 1), σ3 = (1 2)(3 4)(5 6). (1.29)

While their cycle structures differ, all three permutations have exactly three disjoint cycles. This
illustrates that simply counting the number of cycles is a coarser classification than specifying the
full cycle structure.

In many computations throughout this course, we will be interested in the number of permuta-
tions in Sk with a fixed number of cycles r = #(σ). This quantity is given by the unsigned Stirling
numbers of the first kind, denoted by c(k, r). These numbers satisfy the recursive relation:

c(k + 1, r) = k · c(k, r) + c(k, r − 1), (1.30)

which allows them to be computed inductively, without explicitly listing all permutations. These
numbers form a triangle similar to Pascal’s triangle and are tabulated up to k = 10 in the Appendix.

Starting with the base case k = 1, where S1 = {()}, we find:

c(1, 0) = 0, c(1, 1) = 1. (1.31)

Using the recurrence, the next values for k = 2 are:

c(2, 0) = 0, c(2, 1) = 1, c(2, 2) = 1. (1.32)

Exercise 1.4. Compute the values c(k, r) for 1 ≤ r ≤ k when k = 3 and k = 4. Verify that:

k

∑
r=1

c(k, r) = k! ,
k

∑
r=1

c(k, r)xr = x(x + 1) · · · (x + k − 1) . (1.33)

The first identity reflects the fact that summing over all permutations with a fixed number of cycles r recovers
the total number of permutations in Sk, while the second gives another combinatorial interpretation of c(k, r)
as the coefficients in the power series of the ‘rising factorial’.

1.2.2 The Action of Permutations on Quantum States

Throughout this course, we work with a d-dimensional Hilbert space H = Cd, equipped with the
standard orthonormal basis {|x⟩}d−1

x=0. Our main object of interest is the k-fold tensor product space
H⊗k = (Cd)⊗k, often referred to as the replica space in the many-body literature.

Elements of the symmetric group Sk act naturally on this space by permuting the tensor factors.
Concretely, given a permutation σ ∈ Sk, its action on a product basis state is defined as:

Rσ|x1, x2, . . . , xk⟩ = |xσ(1), xσ(2), . . . , xσ(k)⟩ . (1.34)
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Consider an example with k = 4 and σ = (1 4 3)(2) ∈ S4. We have

Rσ|x1, x2, x3, x4⟩ = |x4, x2, x1, x3⟩ . (1.35)

Equation (1.34) defines a linear (even unitary) operator Rσ on H⊗k. The map

R : Sk −→ U(H⊗k), σ 7→ Rσ (1.36)

is a so-called group representation of Sk. This means it respects the group structure of Sk, more specifi-
cally:

Rσπ = RπRσ, Rι = 1, Rσ−1 = R−1
σ , R†

σ = R−1
σ . (1.37)

These properties follow directly from the definition in Eq. (1.34). As an explicit verification of the
composition law, let us define x̃i := xσ(i) and compute:

RπRσ|x1, x2, . . . , xk⟩ = Rπ|xσ(1), . . . , xσ(k)⟩ = |x̃π(1), . . . , x̃π(k)⟩ (1.38)

= |x(σ·π)(1), . . . , x(σ·π)(k)⟩ = Rσ·π|x1, x2, . . . , xk⟩. (1.39)

We leave the verification of the other axioms – such as unitarity and inverse consistency – as an
exercise.

Exercise 1.5. Verify that R defines a unitary representation of the symmetric group Sk, i.e., check Eq. (1.37).

Exercise 1.6. Show that permutations act on tensor products of operators as follows:

Rσ(A1 ⊗ A2 ⊗ · · · ⊗ Ak)R†
σ = Aσ(1) ⊗ Aσ(2) ⊗ · · · ⊗ Aσ(k). (1.40)

Hint: Apply both sides to a product basis state.

Composite Systems In practice, we often work with multi-qudit systems described by a Hilbert space
of the form H = (Cq)⊗n, corresponding to n qudits of local dimension q. In this setting, the k-fold
copy of the system is given by the tensor product

((Cq)⊗n)⊗k, (1.41)

which can be naturally visualized as a k × n grid of qudits (see Fig. 1.1). Each row represents one
replica of the full system, and each column represents the k copies of a single local qudit.

Quantum operations such as global unitaries typically act row-wise, that is, identically and inde-
pendently on each copy. Such operations are of the form

U⊗k, where U ∈ U((Cq)⊗n), (1.42)

meaning that the unitary acts in parallel across the k rows.
In contrast, permutations act by permuting the rows, i.e., the k copies of each local qudit. This

operation is performed column-wise, and can be implemented by applying the same permutation
operator to each column in parallel. This leads to a convenient factorized structure: if we reinterpret
the total space via the isomorphism

((Cq)⊗n)⊗k ≃ ((Cq)⊗k)⊗n, (1.43)

then the permutation operator Rπ acting on the full system decomposes as

Rπ = r⊗n
π , (1.44)

where rπ acts on the k-dimensional replica space associated with each local qudit. This “horizon-
tal” factorization is exactly what is depicted in Fig. 1.1 and will be essential in constructing efficient
representations of randomized operations throughout the course.
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= Cq

U

rπ

× k

× n

Figure 1.1: The Hilbert space ((Cq)⊗n)⊗k de-
picted as a k×n grid where every point corre-
sponds to a copy of Cq. Unitaries U ∈ U(qn)
act row-wise on the grid, while permutations
π ∈ Sk act column-wise.

Traces Traces will play a fundamental role for explicit computations. Here, we derive a formula
for the trace of permutation operators and for the trace of a product operator multiplied with a
permutation. Let us first consider the cyclic permutation γ = (1, 2, . . . , k). Then, we compute

tr(Rγ) =
d−1

∑
x1,...,xk=0

⟨x1, . . . , xk |Rγ |x1, . . . , xk⟩

= ∑
x1,...,xk

⟨x1, . . . , xk |x2, . . . , xk, x1⟩ = ∑
x1,...,xk

δx1,x2 δx2,x3 . . . δxk−1,xk δxk ,x1 = d. (1.45)

Next, consider an arbitrary permutation σ. Then, we can find a permutation π such that πσπ−1 =
(1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) where r = #σ is the number of cycles in
σ (recall that the cycle structures of σ and πσπ−1 have to necessarily match, cf. Ex. 1.3). But Rπσπ−1

is simply a tensor product of cyclic permutations on H⊗b1 , . . . ,H⊗(b2−b1), . . . ,H⊗(br−br−1) and thus

tr(Rσ) = tr(Rπσπ−1) =
r

∏
i=1

d = dr = d#σ . (1.46)

Beyond this simple situation, we often need to compute the trace of product operators multiplied
with a permutation operator, i.e. an expression of the form tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ). Here, we can
follow the same arguments as above: First, if σ = γ = (1, . . . , k) is the cyclic permutation, then

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRγ) = ∑
x1,...,xk

⟨x1, . . . , xk |A1 ⊗ A2 ⊗ · · · ⊗ Ak |x2, x3, . . . , xk, x1⟩ (1.47)

= ∑
x1,...,xk

(A1)x1,x2(A2)x2,x3 · · · (Ak)xk ,x1 = tr(A1A2 · · · Ak). (1.48)

Next, for an arbitrary σ = (a1, . . . , aj1)(aj1+1, . . . , aj2) . . . (ajr−1+1, . . . , ak), find again a permutation π

that ‘orders the cycles’ as πσπ−1 = (1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) and
then use Ex. 1.6 to conclude that

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ) = tr(Aπ(1) ⊗ · · · ⊗ Aπ(k)Rπσπ−1) (1.49)

= tr(Aπ(1) · · · Aπ(b1)) · · · tr(Aπ(br−1+1) · · · Aπ(br)) (1.50)

= tr(Aa1 · · · Aaj1
) · · · tr(Aajr−1+1+1 · · · Aak). (1.51)

For the important case when A1 = A2 = · · · = Ak, the final result is simplified to

tr(A⊗kRσ) = ∏
c∈λ(σ)

tr(Ac), (1.52)

where λ(σ) is the cycle structure of the permutation σ.
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Symmetric subspace Throughout this course, symmetries under permutations will be a fundamen-
tal role, in particular the subspace of (Cd)⊗k composed of vectors that are left invariant by permuta-
tions:

Symk,d ≡ Sym((Cd)⊗k) := {ψ ∈ (Cd)⊗k | Rσ|ψ⟩ = |ψ⟩ ∀σ ∈ Sk} . (1.53)

We will now show that the projector onto Symk,d is

PSym,k,d =
1
k! ∑

σ∈Sk

Rσ . (1.54)

To see this, we first check that PSym,k,d is an orthogonal projector:

P2
Sym,k,d =

1
(k!)2 ∑

σ,π∈Sk

Rσπ . =
1
k! ∑

σ∈Sk

1
k! ∑

τ∈Sk

Rτ = PSym,k,d , (1.55)

P†
Sym,k,d =

1
k! ∑

σ∈Sk

Rσ−1 =
1
k! ∑

π∈Sk

Rπ = PSym,k,d , (1.56)

where we substituted variables as τ = σπ and π = σ−1, respectively, and used that the sum is
invariant under the change of variables. Next, note that for all ψ ∈ Symk,d:

PSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rσ|ψ⟩ =
1
k! ∑

σ∈Sk

|ψ⟩ = |ψ⟩ , (1.57)

thus, Symk,d is in the range of PSym,k,d. Moreover, if PSym,k,d|ψ⟩ = |ψ⟩, then

Rπ|ψ⟩ = RπPSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rπσ|ψ⟩ =
1
k! ∑

τ∈Sk

Rτ|ψ⟩ = PSym,k,d|ψ⟩ = |ψ⟩ , (1.58)

and thus the range of PSym,k,d is exactly Symk,d. We can now compute the dimension of the symmetric
subspace using Eq. (1.46) and Ex. 1.4 as

dim Symk,d = tr PSym,k,d =
1
k! ∑

σ∈Sk

d#σ =
1
k!

k

∑
r=1

c(k, r)dr =
d(d + 1) · · · (d + k − 1)

k!
=

(
d + k − 1

k

)
.

(1.59)

Graphical representation While the above methodologies are generic and straightforward, the al-
gebra is often cumbersome. For this reason, it is useful to introduce a graphical notation to represent
permutation. Similar to the Feynman diagrammatics for perturbative expansions, this is simply a
bookkeeping of the operation previously described.

We denote permutations as lines connecting the list {1, 2, . . . , k} to the output {σ(1), σ(2), . . . , σ(k)}.
For example, given τ = (12)(35)(4) a 5 elements permutation, we can represent it as

(12)(35)(4) ∼=

1

2

3

4

5

(1.60)
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This notation is particularly useful, since it makes computing products particularly easy. For exam-
ple, the product of τ with σ = (123)(4)(5), we simply need to follow the lines after connecting them,
specifically

σ · τ ∼=

1

2

3

4

5

∼=

1

2

3

4

5

∼= (235)(1)(4) (1.61)

Since the group structure is the same for the representations of Sk, we can use the same notation also
for the operators {Rσ : σ ∈ Sk}. For representations, the diagrammatic notation allows also to include
traces and product by operators.

Traces require to add a curve that connect initial and final endpoints. For example:

tr(Rσ) = = ( )
#(σ)

= d#(σ). (1.62)

Similarly, for operators we have

tr(A⊗kRσ) =
A

A

A

A

A

= tr(A3)tr(A)2 (1.63)



CHAPTER 2

QUANTUM RANDOMNESS I

In this section, we lay the foundation for one of the central objects in quantum information theory and
random quantum systems: the Haar twirl. This is the average over the unitary group of a replicated
quantum channel, defined as

Mk(A) :=
∫

U(d)
U⊗k AU⊗k,†dU . (2.1)

This map, known as the k-th unitary twirl, appears repeatedly throughout these notes and plays a
fundamental role in both quantum information theory and many-body physics. It arises in contexts
ranging from randomized benchmarking and quantum designs to entanglement theory, thermaliza-
tion, and quantum chaos.

We begin by briefly discussing the structure of the Haar measure dU on the unitary group U(d),
and how random unitaries can be parametrized in practice. We then turn to the evaluation of the
Haar twirl integral (2.1). The key observation is that Mk(A) lies in the so-called commutant of U⊗k,
i.e., the space of operators that commute with all U⊗k for U ∈ U(d). A powerful result from repre-
sentation theory – the Schur-Weyl duality – tells us that this commutant is spanned by the action of
the symmetric group via permutations on H⊗k.

This insight allows us to express the Haar twirl as a linear combination over permutations, with
coefficients given by the Weingarten calculus – a systematic method to evaluate integrals over the
unitary group. The remainder of this section is devoted to developing these tools and applying them
to compute Mk(A) explicitly.

2.1 What is a Haar measure?

On the real line R, there is a unique measure dx satisfying two simple but fundamental properties

d(x + y) = dx (translation invariance) ,
∫ 1

0
dx = 1 (unit volume) . (2.2)

This measure represents what we intuitively mean by a uniform distribution: translation invariance
ensures that no point is preferred over any other. However, since R is non-compact, this measure
assigns infinite volume to the full space, and thus cannot be normalized to a probability measure. To
work around this, we typically restrict to a compact interval such as [0, 1], which provides a natural
normalization.

Remarkably, this idea of defining an invariant, uniform measure generalizes to far more abstract
settings. Whenever the underlying set carries a suitable group structure, one can often define a natu-
ral measure that is invariant under group multiplication. More precisely, if G is a compact (Hausdorff
topological) group then there exists a unique measure dg on G that is both

left/right invariant dg = d(hg) = d(gh) (2.3)

normalized
∫

G
dg = 1 . (2.4)

This unique measure is called the Haar (or uniform) measure on G.
In this course, our primary interest lies in the unitary group U(d), which is compact and satisfied

the condition above. Concretely, the Haar measure dU on U(d) satisfies

dU = d(UV) = d(VU)
∫

U(d)
dU = 1 . (2.5)

13
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This measure provides a rigorous definition of what it means to sample a unitary matrix uniformly at
random. In principle, one could perform such an integration by explicitly parametrizing the unitaries
and integrating over the associated coordinates. However, this approach becomes highly impracti-
cal as the dimension d increases, due to the complicated geometry and rapidly growing number of
parameters. Instead, we will introduce more powerful techniques—based on symmetry and rep-
resentation theory—that allow us to compute Haar integrals in an efficient and conceptually clean
way.

Example 2.1: Cycle Structure

Consider d = 2 and let us compute the Haar average∫
U(2)

dU UAU† (2.6)

for a general operator

A =

(
a11 a12
a21 a22

)
. (2.7)

A generic unitary on U(2) is given by

U(θ, ϕ, ψ) =

(
cos θ eiϕ sin θ

eiψ sin θ ei(ϕ+ψ) cos θ

)
(2.8)

with the Haar measure dU = (4π2)−1 sin(2θ)dθdϕdψ with θ ∈ [0, π/2] and ϕ, ψ ∈ [0, 2π].
(We ignore the global phase since it cancels trivially in UAU†. The integral acts on each
element of the total matrix (UAU†)ij = ∑k,l Ui,k Ak,lŪj,l . For concreteness, let us compute
only the entry i = j = 1: (U† AU)11 = u11a11ū11 + u11a12ū12 + u12a21ū11 + u22a22ū22. Using
the well known formula

∫
dαeinα = δn,0, we find that the terms a12 and a21 simplify. The

remaining computation requires∫ π/2

0
dθ sin(2θ)(cos2 θa11 + sin2 θa22) =

1
2
(a11 + a22). (2.9)

Working out the details for the other indices, we obtain∫
U(2)

dU UAU† =
1
2

(
a11 + a22 0

0 a11 + a22

)
=

1
2

tr(A)I. (2.10)

2.1.1 The unitary commutant

In this section, we study the subspace of operators that commute with U⊗k, which we call the (k-fold)
commutant of U(d):

Commk = {A ∈ L(H⊗k) |U⊗k A = AU⊗k ∀U ∈ U(d)} . (2.11)

We care about this because of the following, elementary observation:

Lemma 2.1. Mk(A) ∈ Commk for all A ∈ L(H⊗k). In fact, every element in Commk is of the form Mk(A).

Proof. Clearly, if A commutes with all U⊗k, then Mk(A) = A, i.e. every element in Commk is of the
form Mk(A). Vice versa, if B = Mk(A), then, by the invariance of the Haar measure:

U⊗kBU⊗k,† =
∫

U(d)
(UV)⊗k A(UV)⊗k,†dV =

∫
U(d)

V⊗k AV⊗k,†dV = B , ∀U ∈ U(d) . (2.12)

Thus, B ∈ Commk.
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A central step in understanding the commutant is to note that the representation of Sk on H⊗k

introduced in Sec. 1.2.2, this is Rπ|x1, . . . , xk⟩ = |xπ(1), . . . , xπ(k)⟩, clearly commutes with U⊗k. In
representation-theoretic terms, the representations of U(d) and Sk are said to be dual to each other.
This implies that the permutations are contained in the unitary commutant, Rπ ∈ Commk for all
π ∈ Sk. A fundamental result in representation theory, Schur-Weyl duality, even states that every
element in the commutant is a linear combination of permutations. We will only state this result here
and refer for a proof to the literature [tbd].

Theorem 2.1 (Schur-Weyl duality). The k-fold unitary commutant Commk is spanned by {Rσ | σ ∈ Sk}.
Vice versa, the commutant of {Rσ | σ ∈ Sk} is spanned by {U⊗k |U ∈ U(d)}

A natural question to ask is whether the permutations form a basis for the commutant. Intrigu-
ingly, this is the case if the dimension d is large enough:

Lemma 2.2. The set {Rσ | σ ∈ Sk} is linearly independent for d ≥ k .

Proof. We consider the standard basis of Cd, which we here denote as |1⟩, . . . , |d⟩. Since k ≤ d, we can
consider the action of permutations on |1, . . . , k⟩ ∈ (Cd)⊗k:

R(π)|1, . . . , k⟩ = |π(1), . . . , π(k)⟩ . (2.13)

Now, if R(π) and R(σ) would be linearly dependent (π ̸= σ), than so would be the states |π(1), . . . , π(k)⟩
and |σ(1), . . . , σ(k)⟩. However, these are distinct elements from a basis, thus we arrive at a contradic-
tion.

Remark 2.1. In fact, permutations become linearly dependent as soon as k > d. We do not need this statement
in the following, thus we will not treat the proof in the lecture. We however state it here for completeness. We
consider the antisymmetric subspace Altk,d ⊂ (Cd)⊗k which is the joint −1 eigenspace of all transpositions
R((ij)) for (ij) ∈ Sk. The projector onto Altk,d has the general form

PAlt,k,d =
1
k! ∑

π∈Sk

sgn(π)R(π) , (2.14)

where the sign function sgn(π) is given as follows: Decompose π into transpositions only, then count the
number of transpositions needed. If it is even, sgn(π) = 1, else sgn(π) = −1. Now, dim Altk,d = (d

k) = 0
if k > d, and hence PAlt,k,d = 0. This gives a non-trivial linear relation between permutations, i.e. they are
linearly dependent.

2.1.2 Weingarten calculus

By the previous findings, we can always write Mk(A) as a linear combination

Mk(A) = ∑
π∈Sk

cπ(A)Rπ , (2.15)

for some coefficients cπ(A). Note that taking the trace inner product of Mk(A) with a fixed permuta-
tion R†

σ yields

tr(R†
σMk(A)) =

∫
tr(R†

σU⊗k AU⊗k,†)dU =
∫

tr(U⊗k,†R†
σU⊗k A)dU = tr(R†

σ A) . (2.16)

However, we also have

tr(R†
σ A) = tr(R†

σMk(A)) = ∑
π∈Sk

cπ(A) tr(R†
σRπ) =: ∑

π∈Sk

cπ(A)Gσ,π , (2.17)

where we defined the Gram matrix

Gπ,σ := tr(R†
πRσ) = tr(R†

πRσ) = tr(Rπ−1σ) = d#(π−1σ) . (2.18)
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Here, we used that R is a representation to combine the product of permutation operators, and the
trace formula (1.46). Setting aσ := tr(R†

σ A), we can write the above equation in matrix form as
a = Gc, which we could hope to invert to get an expression for the coefficient vector c. Note that
the permutations are not orthogonal with respect to the trace inner product (A |B) = tr(A†B), and
hence the Gram matrix is not simply diagonal. However, we know that the permutations span the
commutant and that Mk(A) lies in the commutant. Hence, the equation a = Gc always has a solution
and it is unique if and only if the permutations form a basis, i.e. iff d ≥ k, which is what will always
assume for the remainder of this course.1 Then, this solution is simply c = G−1a, or put differently,

Mk(A) = ∑
π,σ∈Sk

Wπ,σ tr(R†
σ A)Rπ , (2.19)

where we defined W := G−1, the so-called Weingarten matrix. Knowing the Weingarten matrix allows
us to compute integrals of the form (2.1) using the Weingarten expansion (2.19).

Properties of the Gram and Weingarten matrix The Gram and Weingarten matrix have a substan-
tial structure which directly relates to the representation theory of the symmetric group. We will not
dive into these details in this course, but instead prove some concrete relations. We summarize them
in the following.

Lemma 2.3. The Gram and Weingarten matrix fulfill the following properties.

(a) Gπ,σ and Wπ,σ only depend on π−1σ.

(b) The row and column sums of G are constant:

Gk,d := ∑
σ

Gπ,σ = ∑
π

Gπ,σ =
(d + k − 1)!
(d − 1)!

= d(d + 1) · · · (d + k − 1) . (2.20)

(c) The row and column sums of W are constant:

∑
σ

Wπ,σ = ∑
π

Wπ,σ = G−1
k,d =

(d − 1)!
(d + k − 1)!

. (2.21)

Proof. (a) Clearly, Gπ,σ depends only on π−1σ by definition (cf. Eq. (2.18)). Now note that this implies
that G is invariant under simultaneous row and column permutations. Indeed, if Tτ is the permu-
tation matrix acting as Tτ|eπ⟩ = |eτπ⟩, then (T−1

τ GTτ)σ,π = Gτσ,τπ = Gσ,τ. Inverting G = T−1
τ GTτ

yields W = T−1
τ WTτ and thus Wπ,σ = Wτπ,τσ for all τ, in particular Wπ,σ = Wid,π−1σ for τ = π−1. For

(b), we compute

Gk,d = ∑
σ

tr(Rπ−1σ) = ∑
σ

tr(Rσ) = k! tr(PSym,k,d) = k!
(

d + k − 1
k

)
=

(d + k − 1)!
(d − 1)!

. (2.22)

Here, we used that the multiplication by π−1 can be absorbed into the sum (variable change), and
the definition of the projector onto the symmetric subspace, PSym,k,d = 1

k! ∑σ Rσ, and the value of its
trace, cf. Eqs. (1.54) and (1.59). For (c), we note that the definition of W as inverse of G implies

∑
π

Wσ,πGπ,τ = δσ,τ ⇒ 1 = ∑
π,τ

Wσ,πGπ,τ = Gk,d ∑
π

Wσ,π ⇒ ∑
π

Wσ,π = G−1
k,d . (2.23)

1It is however not terribly complicated to make this work for d < k, see Sec. 2.3.
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Some examples and exercises In the following, we will compute the Weingarten matrix for small
values of k and illustrate the computations of Haar integrals using a number of examples. To this
end, we use that the Gram matrix has a very simple form: It is the trace of a permutation Rτ = R†

πRσ

and we gave an expression for this in Eq. (1.46).

Example 2.2: Weingarten matrix for k = 2

Let us consider k = 2. Then we only have two permutations: the identity 1 and the
flip/swap F = (2 1). There is only one non-trivial matrix element, namely G1,F = tr(F) =
d. Hence, the Gram and Weingarten matrices are

G = d2
(

1 d−1

d−1 1

)
, W =

1
d2 − 1

(
1 −d−1

−d−1 1

)
. (2.24)

Example 2.3: Average collision probability

The probability of obtaining the computational basis state x on U|0⟩ is p(x|U) =
|⟨x |U |0⟩|2. A measure of flatness of this distribution is the collision probability:

ZU := ∑
x

p(x|U)2 = ∑
x
|⟨x |U |0⟩|4 . (2.25)

Here, we are interested on how flat this distribution is on average, over Haar-random
unitaries U. Due to the invariance of the Haar measure, we can simply absorb the X gates
that prepare |x⟩ = Xx1 ⊗ · · · ⊗ Xxn |0⟩ =: X(x)|0⟩ into the average:

Z :=
∫

ZUdU = ∑
x

∫
U
|⟨0 |X(x)U |0⟩|4dU = d

∫
U
|⟨0 |U |0⟩|4dU . (2.26)

To compute the integral, we use second-order Weingarten calculus:

Z = d
∫

U
tr(|0⟩⟨0|⊗2U⊗2|0⟩⟨0|⊗2U⊗2,†)dU (2.27)

= d ∑
π,σ∈S2

Wπ,σ tr(R†
σ|0⟩⟨0|⊗2) tr(Rπ|0⟩⟨0|⊗2) (2.28)

= d ∑
π,σ∈S2

Wπ,σ (2.29)

= 2dG−1
2,d = 2d

(d − 1)!
(d + 1)!

=
2

d + 1
. (2.30)

Here, we used Lem. 2.3. Note that we haven’t actually used the exact form of the Wein-
garten matrix from Ex. 2.2. In fact, along the same lines we find that the average of
∑x p(x|U)k is

Ik := ∑
x

∫
p(x|U)kdU = k!dG−1

k,d =
k!d!

(d + k − 1)!
. (2.31)

Exercise 2.1. Using Weingarten calculus, compute the operator S := d
∫
(U|0⟩⟨0|U†)⊗2dU .

2.2 Approximating the Haar measure: Unitary designs

In this chapter, we have seen how Haar integrals over the unitary group can be computed using
Weingarten calculus. These tools will help us to design randomized protocols and algorithms for
applications, and we will see an example for that already in the next chapter. In practice, Haar-
random unitaries are however way too expensive to be useful: On a system with n qudits, a quantum
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Figure 2.1: Caricature showing a “series expansion” of the Haar measure on the full unitary group
(here depicted by a sphere) into finite subsets that agree with the k-th Haar moment. Taken from
Kueng and Gross [1].

circuit implementing a Haar-random unitary requires a circuit depth that is exponential in n. This
means that any quantum algorithm that utilizes Haar-random unitaries necessarily has exponential
runtime.

In this section, we thus briefly discuss a concept introduced to lower the requirements for quan-
tum randomness: unitary k-designs. These are sets of unitaries that mimic the Haar measure up to the
k-th moment and can thus be used as a replacement in applications that rely on finite moments only.
Importantly, unitary designs may be constructed using significantly less resources than Haar-random
unitaries, in particular using polynomial-sized circuits.

2.2.1 Unitary designs

Formally, we define a unitary design as follows. Let G ⊂ U(d) be a (finite) set of unitaries (we can
extend this to infinite sets equipped with a suitable probability measure). Then, we call G a unitary
k-design if

1
|G| ∑

U∈G
U⊗k AU⊗k,† = Mk(A) , (2.32)

for all matrices A. We call the largest k for which Eq. (2.32) holds the order of the unitary design.
Unitary designs can be seen as a set of points in the unitary group that are “sufficiently equally
distributed” to reproduce the first moments of the Haar measure, cf. Fig. 2.1.

Note that the left hand side of Eq. (2.32) can be seen as the k-fold twirl over the set G. This
means that averages over the set G can be computed using averages over the full unitary group
– for instance using Weingarten calculus. Vice versa, in applications that only depend on k-fold
twirls, Haar-random unitaries can be replaced by unitary k-designs, thereby enabling more resource-
efficient and flexible implementations.

One might hope that one could find sufficiently symmetric subgroups of U(d) that gives natural
candidates for unitary designs. However, it turns out that Eq. (2.32) together with the group structure
imposes very strict conditions on such a subgroup, resulting in the fact these do no exist for k ≥ 4
(and d ≥ 5). Despite this, the most important example of a unitary design (with k = 3) is in fact a
group, the Clifford group, which we will introduce in the next section.

Nevertheless, unitary k-designs exist for all k and dimensions d. Unfortunately, explicit construc-
tions of general unitary k-designs are incredibly rare and the known ones are highly inefficient. To
overcome these obstacles, it has been fruitful to demand that Eq. (2.32) holds only approximately
– such approximate unitary designs can be realized much more easily and enable the efficient imple-
mentation of quantum randomness also for higher moments k. We will come back to this point in
Ch. 4.

2.2.2 The Clifford group

The prototypical example of a unitary design is the Clifford group. Besides designs, the Clifford group
plays a major role in quantum error correction, where it typically constitutes the set of “easy” gates in
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fault-tolerant quantum computing. Clifford operations can also be efficiently simulated on a classical
computer, making them the starting point for classical simulation algorithms and investigations of
the “non-classicality” of quantum mechanics.

The simplest way to define the Clifford group is via its local generators: The single-qubit phase
gate S and Hadamard gate H, as well as the two-qubit CNOT gate CX, given by

S|x⟩ = ix|x⟩ H|x⟩ = 1√
2

(
|0⟩+ (−1)x|1⟩

)
CX|x, y⟩ = |x, y ⊕ x⟩ , (2.33)

where y ⊕ x denotes addition modulo 2. The group that is generated by S and H on every qubit and
CX on every pair of qubits is the n-qubit Clifford group Cln. It is a finite subgroup of U(2n) with 2O(n2)

elements. Importantly, every Clifford unitary can be implemented using O(n2) generators S, H, and
CX.

An important subgroup of the Clifford group is the Pauli group. Recall the Pauli operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.34)

which we complement with the identity 1. Then, the multi-qubit Pauli operators on H = (C2)⊗n are
simply given by all possible tensor products of the single-qubit Pauli operators, in formula:

σ = σ1 ⊗ · · · ⊗ σn , σi ∈ {1, X, Y, Z} . (2.35)

The n-qubit Pauli operators form a group up to phases, the so-called n-qubit Pauli group:

Pn := {itσ1 ⊗ · · · ⊗ σn | t ∈ Z4, σi ∈ {1, X, Y, Z}} . (2.36)

To see that Pn forms a subgroup of Cln, note that Z = S2, HZH = X, and Y = iXZ. It turns out
that we can characterize the Clifford group uniquely through the Pauli group: Clifford unitaries are
exactly those unitaries that conjugate Paulis into Paulis, up to a phase.2 In formula, we thus have

Cln. U(1) =
{

U ∈ U(2n) | UPnU† = Pn
}

. (2.37)

Note that we had to add arbitrary global phases (U(1)) to Cln as these are present on the right hand
side as well.

The qudit case. The definition of the Clifford group can be readily extended to higher-dimensional
qudits of dimension q. We will here focus on the case that q > 2 is prime, as this will matter for the
design properties of the Clifford group.

We start by generalizing the generators of the qubit Clifford group. To this end, let ωq := e2πi/q

be a primitive q-th root of unity, and let 2−1 be the inverse of 2 modulo q. Define

Hq|x⟩ :=
1
√

q

q−1

∑
y=0

ω
xy
q |y⟩ Sq|x⟩ := ω

2−1x(x−1)
q |x⟩ CXq|x, y⟩ := |x, y ⊕ x⟩ , (2.38)

where y ⊕ x denotes addition modulo q. Then, we again define the n-qudit Clifford group Cln(q) to
be the group generated by Hq, Sq on every qudit and CXq on every pair of qudits. This is again a
finite subgroup of U(qn) of order qO(n2).

Equivalently, we can define Cln(q) in terms of a qudit version of Pauli operators, defined by

Zq|x⟩ := ωx
q |x⟩ , Xq|x⟩ := |x ⊕ 1⟩ , Yq := ω2−1

q X†
q Z†

q . (2.39)

The qudit Pauli group is then given as

Pn(q) := {ωt0
q σt1

1 ⊗ · · · ⊗ σtn
n | ti ∈ Zq, σi ∈ {Xq, Yq, Zq}} . (2.40)

As in the qubit case, qudit Clifford unitaries map qudit Paulis to qudit Paulis, up to a phase.
2In group-theoretic terms, the Pauli group is a normal subgroup of the Clifford group, and the Clifford group is the

normalizer of the Pauli group within the unitary group.
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The Clifford group as a design. Finally, we have the following result on the design properties of
the Clifford group.

Theorem 2.2. Let q be prime. Then, the Clifford group Cln(q) is a unitary 2-design but not a 3-design if q is
odd, and a unitary 3-design but not a 4-design if q = 2.

We will not prove this theorem here. It is not particularly difficult (see e.g. Ref. [2, Sec. 12.2] for a
summary), but it requires a slightly deeper analysis of the structure of the Clifford group which shall
not be the focus of this course.

2.3 Further reading

To be done.



CHAPTER 3

MEASURING PROPERTIES OF MANY-BODY STATES USING CLASSICAL SHADOWS

Quantum experiments are getting better and better in coherently manipulating many-body quantum
systems. We can use this to study interesting many-body phenomena by preparing exotic and weird
quantum states. In quantum computers, a high level of control is necessary to manipulate quantum
information and perform quantum computations.

However, even with perfect quantum control, we are left with the problem of extracting infor-
mation from the prepared quantum states. An example for this would be the expectation value of
a given Hamiltonian, because we are trying to find its ground state through a variational quantum
algorithm. We could also be interested in more complicated properties, such as the entanglement of
the state across some bipartition to verify or reject area laws.

In this chapter, we consider the problem of experimentally estimating an expectation value of the
form tr(Oρ), where ρ is the quantum state that is experimentally accessible and O is the observable
of interest. Importantly, we do not assume that O can be measured directly. In the following, we
will show that for some interesting classes of observables this problem can be solved using classical
shadows. The main idea is to randomize measurement bases using a suitable ensemble of random
unitaries, resulting in a partial classical representation of the quantum state (the “shadow”). The
shadow can then be used be a classical computer to predict expectation values. Intriguingly, the
same classical shadow can be used to predict expectation values of many observables at once, at a
moderate (logarithmic) overhead in the size of the shadow (i.e. the number of measurements).

We will first review some basics on quantum measurements and the (partial) reconstruction of
quantum states from measurement data. Afterwards, we introduce the idea of classical shadows and
treat most common instances of the protocol based on Clifford unitaries. We will also hint briefly at
other usecases discussed in the literature.

3.1 Reconstructing quantum states from measurements

Suppose we have access to many copies of a quantum state ρ and we want to obtain a classical de-
scription of ρ from measurement statistics, e.g., in the form of a density matrix. This reconstruction
task is also called quantum state tomography. The central question is how should we choose our mea-
surements such that this reconstruction succeeds (for any state), and how many measurement do we
need in total?

Let us consider quantum measurements in a basis |φ1⟩, . . . , |φd⟩ of the Hilbert space H. The
probability distribution over outcomes of this measurement follows Born’s rule:

Born’s rule: p(i|ρ) := ⟨φi |ρ |φi⟩ = tr(Eiρ) where Ei := |φi ⟩⟨φi| . (3.1)

Clearly, measuring in a basis cannot be enough for state reconstruction because we can only assess
the diagonal elements of ρ in the chosen basis. Hence, we are insensitive to any coherence in the
basis: For instance, we cannot distinguish between any two states of the form |0⟩+ eiα|1⟩ by looking
at the diagonal elements of their density matrices only.

However, it turns out that if we combine measurements in sufficiently many bases, state recon-
struction is possible and we will explicitly describe such a reconstruction algorithm in a moment.
Before, we introduce some new notation that will simplify both the following computations as well
as those in the upcoming chapters.

Operator bra-ket notation. Recall that the vector space L(H) of linear operators on H is equipped
with the trace inner product:

(A |B) := tr(A†B) . (3.2)

21
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With this notation, we can now express Born probabilities as

p(i|ρ) = (Ei |ρ) , (3.3)

with the interpretation of projecting the state ρ onto the pure state Ei = |φi ⟩⟨φi|. Furthermore,
analogous to the ordinary bra-ket notation based on the inner product ⟨·| ·⟩ on H, we now introduce
operator bra-ket notation by defining operator kets and operator bras as

|B) := B , (A| : B ≡ |B) 7→ (A |B) . (3.4)

Note that operator bras (A| are linear forms on L(H) (dual vectors), just as ordinary bras ⟨ψ| are
dual vectors on H. Again similar to the ordinary bra-ket notation, we introduce operator bra-kets as
the outer products

|A)(B| : C ≡ |C) 7→ |A)(B |C) , (3.5)

As we will see in a moment, this gives us a convenient way to write down linear maps on operators,
similar to expressions of the form A = ∑i,j Ai,j|i⟩⟨ j| for the ordinary bra-ket notation. For instance,
the Weingarten expansion (2.19) attains the following appealing form in this notation:

Mk = ∑
π,σ∈Sk

Wπ,σ|Rπ )(Rσ| , (3.6)

Following the quantum information language, we will refer to linear maps on operators, such as (3.5),
as superoperators (as these are “operators on operators”). An important example of superoperators are
quantum channels.

Reconstruction via linear inversion. Equipped with the new notation, let us come back to the
reconstruction of quantum states from measurements. Consider the following superoperator:

S :=
d

∑
i=1

|Ei )(Ei| . (3.7)

We call S the frame (super)operator associated to the basis (φi)i∈[d]. In the classical shadows literature
S is also called the measurement channel. Note that we have S(ρ) = ∑d

i=1 p(i|ρ)Ei for any state ρ
and in this sense, the inability of reconstructing a state from a basis measurement is encoded in the
non-injectivity of S.

However, it turns out that if we combine measurements in sufficiently many bases, we can per-
form successful state reconstruction. Suppose we are given bases (φi,j)i∈[d] for j = 1, . . . , m and we
perform measurements in any of those. The frame operator of this combined measurement strategy
is a convex combination of the single frame operators:

S =
1
m

m

∑
j=1

Sj =
1
m

m

∑
j=1

d

∑
i=1

|Ei,j )(Ei,j| . (3.8)

Suppose that this combined frame operator S is invertible, which is –as it turns out– necessary for
reconstruction (cf. Ex. 3.1). Then, we can do the simply manipulation

ρ = S−1S(ρ) =
1
m

m

∑
j=1

d

∑
i=1

S−1|Ei,j)(Ei,j |ρ) =
1
m

m

∑
j=1

d

∑
i=1

p(i, j|ρ)Ẽi,j , (3.9)

where p(i, j|ρ) = (Ei,j |ρ) are again the Born probabilities and Ẽi,j := S−1(Ei,j) are the dual measure-
ment elements. This gives as a simply recipe to reconstruct the state ρ from the Born probabilities
p(i, j|ρ) obtained through measurements, which is typically called linear inversion tomography.

As it is generally the case for quantum state tomography, we need a lot of copies of ρ, i.e. mea-
surements, to approximate ρ through the formula (3.9), namely at least dr2ε−2 many, where d is the
Hilbert space dimension, r = rank(ρ), and ε is the desired precision in trace distance. This means
that the measurement effort of quantum state tomography scales exponentially with the number of
qudits in the system and is thus limited to small systems only.
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Exercise 3.1 (Informationally complete measurements). In general, state reconstruction can only be suc-
cessful if the Born probabilities differ for any two states ρ ̸= ρ′. If this is the case, we call the measurement
informationally complete (IC).

(a) Show that measurements in several bases is informationally complete if and only any operator X ∈ Cd×d

can be written as a linear combination of the Ei,j, this is X = ∑i,j xi,jEi,j (i.e. the Ei,j span the space of
operators). Hint: Consider the linear map V(x) := ∑i,j xi,jEi,j from Cd×m to L(H) and its adjoint V†

(bra-ket notation might be useful).

(b) Show that measurements in several bases is informationally complete if and only if the frame operator
(3.7) is invertible. Hint: Show that S = 1

m VV† where V is the map from (b).

Exercise 3.2. For those interested in quantum information: Show that the frame operator (3.7) is indeed a
quantum channel by computing its Choi matrix.

3.2 Shadow estimation with randomized measurements

In the previous section, we have seen that quantum state tomography can be realized based on simple
linear inversion, but it requires exponentially many measurements rendering it very inefficient. But
what if we are not interested in reconstructing the full state ρ, but only some of its features? Concretely,
let us say that we want to reconstruct M linear functions of ρ, which we can write as (Os |ρ) (s =
1, . . . , M). We call this task shadow tomography as we do not observe the full state, but only some of
features, similar to the shadow of an object that is illuminated from a certain direction, cf. Fig. 3.1.
Can shadow tomography be done more efficiently than performing full quantum state tomography?

The answer is yes, but it depends, namely on the allowed measurement strategy (can we access
only single copies of ρ, or some of them at once) and also on the observables Os. In the following, we
will focus on single-copy measurements and show how randomized measurements can be used to
estimate some classes of expectation values very efficiently.

Figure 3.1: Shadow tomography is the task
of determining only some of the features of a
quantum state without performing full quan-
tum state tomography. We do this by con-
sidering only few measurements of the state
akin to the shadows of an object under few
illumination angles as shown in this cartoon.
Figure taken from the popular summary of
Ref. [3].

We thus study measurements in random rotations of the computational basis, i.e. measurements
are performed in the bases

|U, x⟩ := U†|x⟩ , EU,x := |U, x⟩⟨U, x| = U†|x⟩⟨x|U , x ∈ [d] , (3.10)

where the unitary U is sampled uniformly at random from a finite set G ⊂ U(d) (here the adjoint
comes from using the Heisenberg picture). The frame operator is then a probabilistic mixture of the
frame operators in the rotated bases (3.10):

S =
1
|G| ∑

U∈G

d

∑
x=1

|EU,x )(EU,x| . (3.11)

The underlying observation is that we can use the linear inversion trick (3.9) to obtain the following
identity for expectation values:

(O |ρ) = (O |S−1S |ρ) = 1
|G| ∑

U∈G

d

∑
x=1

(O |S−1 |EU,x)(EU,x |ρ) = ∑
U∈G

d

∑
x=1

(O | ẼU,x)p(x|U, ρ)p(U) , (3.12)
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where we set p(x|U, ρ) = (EU,x |ρ) and p(U) = 1/|G|. We chose the later notation to highlight
that we are sampling pairs (U, x) according to the joint distribution p(x|U, ρ)p(U). This suggests to
estimate the expectation value (O |ρ) using the following protocol.

Protocol 3.1: Shadow estimation

Repeat the following steps N times:

(i) Sample a unitary U uniformly at random from the set G and apply it to ρ

(ii) Measure in the computational basis resulting in outcome x

(iii) Record the pair (U, x)

Estimate (O |ρ) using the mean estimator of ôU,x := (O | ẼU,x) on the N samples.

Equation (3.12) then guarantees that shadow estimation 3.1 converges in expectation to (O |ρ)
(i.e. ô is an unbiased estimator). But how fast does this estimator converge, i.e. how many measure-
ments N do we have to perform? As we will see below, this depends a lot on the used ensemble G
and on the observable O (as well as on the state).

To answer the question on sample complexity, as well as other questions on the efficiency and
practicability of the shadow estimation protocol 3.1, we have to analyze it in more depth. As a first
step we will compute the frame operator (3.7) and its inverse, as it is needed in the construction
of the estimator ôU,x = (O |S−1 |EU,x). The frame operator involves two invocations of U and U†,
respectively, which we can explicitly see by considering the matrix elements

(A |S |B) =
d

∑
x=1

1
|G| ∑

U∈G
(A |EU,x)(EU,x |B) =

d

∑
x=1

1
|G| ∑

U∈G
tr(A† ⊗ B U⊗2|x⟩⟨x|⊗2U⊗2,†) (3.13)

Hence, if we take G to be a unitary 2-design, we can replace the average over G in Eq. (3.13) by an
average over the unitary group, computable via Weingarten calculus. In the following, we will see
that this brings S into a very simple form.

3.2.1 Clifford measurements

Computing the shadow estimator. Let us thus assume that we are randomizing over a unitary
2-design, or equivalently, over Haar-random unitaries, and compute the frame operator by k = 2
Weingarten calculus. To this end, we evaluate the integral (cf. Example 2.3):

(A |S |B) =
d

∑
x=1

∫
U(d)

tr(A† ⊗ B U⊗2|x⟩⟨x|⊗2U⊗2,†)dU (3.14)

=
d

∑
x=1

∑
π,σ∈S2

Wπ,σ tr(R†
σ A† ⊗ B) tr(Rπ|x⟩⟨x|⊗2) (3.15)

= d ∑
π,σ∈S2

Wπ,σ tr(R†
σ A† ⊗ B) (3.16)

= d
(d − 1)!
(d + 1)! ∑

σ∈S2

tr(R†
σ A† ⊗ B) (3.17)

=
1

d + 1

(
tr(A†) tr(B) + tr(A†B)

)
. (3.18)
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In the last step, we used that tr(R(12)A† ⊗ B) = tr(A†B) which can be easily verified using the graph-
ical notation (cf. Exercise Sheet 2). Next, we note that

1
d + 1

(
tr(A†) tr(B) + tr(A†B)

)
=

1
d + 1

(
(A |1)(1|B) + (A |id|B)

)
(3.19)

=
1

d + 1

(
d(A |D|B) + (A |id|B)

)
, (3.20)

where D = 1
d |1)(1| is the completely depolarizing channel, acting as D(X) = tr(X)1/d. Hence, we

have shown that
S =

1
d + 1

(
dD + id

)
≡ D d

d+1
, (3.21)

is a convex combination of the completely depolarizing channel and the identity, and thus a depolar-
izing channel of strength d/(d + 1). Moreover, as both channels are trace-preserving (TP), so is S. It
is then staightforward to invert S:

Y = S(X) =
tr(X)1+ X

d + 1
⇒ X = (d + 1)Y − tr(Y)1 ⇒ S−1 = (d + 1)id − dD , (3.22)

where we used that S is TP and thus tr X = tr S(X) = tr Y.
Using the explicit form of S−1, we can write the shadow estimator ô as follows

ôU,x = (O |S−1 |EU,x) = (d + 1)(O |EU,x)− tr(O) = (d + 1) tr(OU†|x⟩⟨x|U)− tr(O) . (3.23)

Thus, the evaluation of ôU,x requires us to classically compute the expectation value of O in the
rotated basis states U†|x⟩. We will comment on the efficiency of this computation later.

Number of measurements. A central question remains: How efficient is shadow estimation in terms of
the required number of measurements (sample complexity)? This requires us to bound the convergence
of the mean estimator associated to ô for which we will use Chebyshev’s inequality.

Lemma 3.1 (Chebyshev’s inequality). Let X be a random variable and ε > 0. Then, we have

Pr[|X − E[X]| > ε] ≤ Var[X]

ε2 . (3.24)

In particular, if X1, . . . , XN are independent and identically distributed (iid) random variables with mean µ
and variance σ2, and X := 1

N ∑N
i=1 Xi, then

Pr[|X − µ| > ε] ≤ σ2

Nε2 . (3.25)

Chebyshev’s inequality implies that we need N ≥ ε−2δ−1 Var[ô] many samples to get an ε-
approximate estimate of tr(Oρ) with probability at least 1 − δ. Hence, we need the variance of ô
to be sufficiently small to get a decent bound on the sample complexity.

Before we compute Var[ô], we note that

Var[ô] = E[(ô − E[ô])2] . (3.26)

but ô − E[ô] only depends on the traceless part of O, i.e. O0 = O − tr(O)1/d, since

ôU,x − E[ô] = (d + 1) tr(OU†|x⟩⟨x|U)− tr(O)− tr(Oρ) (3.27)

= (d + 1) tr(O0U†|x⟩⟨x|U)− tr(O0ρ) + tr(O)

(
d + 1

d
− 1 − 1

d

)
(3.28)

= (d + 1) tr(O0U†|x⟩⟨x|U)− tr(O0ρ) . (3.29)
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Thus, we can use the traceless observable O0 instead of O in the future computations. Next, we use
Var[ô] = E[ô2]− E[ô]2 and focus on the computation of E[ô2].

Using the explicit form (3.23) of ô, we then compute

E[ô2
0] = ∑

U∈G

d

∑
x=1

(O0 | ẼU,x)
2 p(x|U, ρ)p(U) (3.30)

=
1
|G| ∑

U∈G

d

∑
x=1

(O0 |EU,x)
2(EU,x |ρ) (3.31)

=
(d + 1)2

|G| ∑
U∈G

d

∑
x=1

(O⊗2
0 ⊗ ρ |E⊗3

U,x) (3.32)

=
(d + 1)2

|G| ∑
U∈G

d

∑
x=1

tr
(

O⊗2
0 ⊗ ρ U⊗3|x⟩⟨x|⊗3U⊗3,†

)
. (3.33)

To compute the latter twirl, we now assume that G is a unitary 3-design such that we can apply
Weingarten calculus. We then find, analogous to the computation of the frame operator (cf. Lem. 2.3):

E[ô2
0] = (d + 1)2

d

∑
x=1

∑
π,σ∈S3

Wπ,σ tr
(
O⊗2

0 ⊗ ρ Rπ

)
tr(R†

σ|x⟩⟨x|⊗3) (3.34)

= d(d + 1)2 (d − 1)!
(d + 2)! ∑

π∈S3

tr
(
O⊗2

0 ⊗ ρ Rπ

)
(3.35)

=
d + 1
d + 2

tr

( O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

)
(3.36)

=
d + 1
d + 2

(
tr(O2

0) + 2 tr(O2
0ρ)
)

, (3.37)

where we used that O0 is traceless and thus the first, third, and fourth term in Eq. (3.36) vanishes. We
thus get the following bound on the variance for a unitary 3-design:

Var[ô] ≤ E[ô2
0] =

d + 1
d + 2

(
tr(O2

0) + 2 tr(O2
0ρ)
)
≤ d + 1

d + 2
(
∥O0∥2

2 + 2∥O0∥2
∞
)
≤ 3∥O0∥2

2 . (3.38)

Here, ∥X∥2
2 = (X |X) = tr(X†X) is the Hilbert-Schmidt norm and ∥X∥∞ = supψ∥X|ψ⟩∥ is the spectral

or operator norm. In the last step, we used Hölder’s inequality, tr(O2
0ρ) ≤ ∥O0∥2

∞ tr ρ, as well as the
general inequality ∥X∥∞ ≤ ∥X∥2.

Discussion of shadow estimation with Clifford unitaries. In the previous derivations we assumed
that G forms a unitary 3-design and for concreteness we will take G = Cln to be the n-qubit Clifford
group.1 Based on the variance (3.38), we can see that shadow estimation with Clifford unitaries is
sample-efficient for observables O with bounded Hilbert-Schmidt norm, ∥O0∥2 ≤ ∥O∥2 ≤ const.
(in the sense that the number of measurements N does only depend on the precision, not on the
number of qubits). The most important example of such observables are quantum states for which
∥σ∥2 =

√
tr(σ2) ≤ 1. The associated expectation values then have the form tr(ρσ) = (ρ |σ) and can

be interpreted as overlaps between the states. Moreover, if σ = |ψ⟩⟨ψ|, then tr(ρσ) = ⟨ψ |ρ |ψ⟩ ≡ F(ρ, σ)
coincides with the usual definition of fidelity between two quantum states (for mixed states, the
formula is a bit more complicated). Hence, we can use shadow estimation with Clifford unitaries to
efficiently perform fidelity estimation with pure target states.

While shadow estimation is sample-efficient, the classical post-processing of the measurement data
requires the evaluation of ôU,x using Eq. (3.23). This typically involves the classical simulation of

1See Sec. 3.3 for the qudit case.
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the unitary evolution of |x⟩ under U†. For the considered Clifford unitaries, it turns out that U†|x⟩
can be efficiently computed on a classical computer (in time O(n2)) and has an efficient classical
description (O(n2) bits) that can be stored (Gottesman-Knill theorem). However, the evaluation of ôU,x
also involves taking the inner product with O which is, in general, inefficient, i.e. we have to expect
that this scales exponentially with the number of qubits n if O does not possess a special structure
that we can exploit.

But how does this compare to other methods of fidelity estimation? The direct fidelity estimation
protocol achieves the same task, but requires a number of measurements that depend on the target
state |ψ⟩ and typically scale exponentially in the number of qubits n, while the demands on the clas-
sical computer are negligible. In this sense, shadows move the complexity of fidelity estimation from
measurements to the classical post-processing, which may be advantageous in near-term devices
where taking measurements is more costly than running computations on a powerful computer. For
a detailed comparison of fidelity estimation based on classical shadows and direct fidelity estimation,
see also Leone, Oliviero, and Hamma [4].

Predicting many expectation values at once. We note that the above estimation strategy can also
be extended to estimate several expectation values (O1 |ρ), . . . , (OM |ρ) at once. To make this precise,
note that for the simultaneous estimation of all expectation values we have to choose the failure
probability for the i-th mean estimator to be δ/M such that the joint failure probability is uniformly
bounded by δ (union bound). Hence, we need the following number of measurements in total:

N ≥ M
ε2δ

max
i=1,...,M

Var[ôi] , (mean estimators) , (3.39)

Depending on the size of M, it may be beneficial to replace the mean estimator for each observable
by a so-called median-of-means estimator. The idea behind the median-of-means estimator is that the
data set is decomposed into K equally sized batches of size N′ for any of which an independent
mean estimator ô(j)

i (N′) is computed. Finally, we take the median over all these mean estimators, in
formula

ôi(N′, K) = median
{

ô(1)i (N′), . . . , ô(K)i (N′)
}

. (3.40)

The advantage of this approach is that it is more robust against deviations from the mean. Indeed,
a statistical analysis of the median-of-means estimator shows that the dependency on the failure
probability of estimating all M expectation values is improved from M/δ to log(M/δ) at the cost of
larger constants. More precisely, we obtain the following bound on the number of samples

N ≥ 68
ε2 log

(
2M

δ

)
max

i=1,...,M
Var[ôi] , (median-of-means estimators) , (3.41)

with batch size K = 2 log(2M/δ), to guarantee an ε-approximate estimation of all M expectation
values with probability at least 1 − δ.

Finally, we note that for the median-of-means estimator to be beneficial, we need 68 log(2M/δ) ≤
M/δ which is true for M/δ ≥ 464.76. Assuming δ = 0.01 (1% failure probability), we thus obtain
M ≥ 5.

3.2.2 Pauli measurements

In the following, we consider the ensemble given by local Clifford unitaries, these are unitaries of
the form U = U1 ⊗ · · · ⊗ Un where Ui ∈ Cl1 are single-qubit Clifford unitaries. We denote this
set by LCln := Cl⊗n

1 . The effect of local Clifford unitaries is to locally change the basis: Instead of
measuring each qubit in the Z basis, each qubit is measured in either the X, Y, or Z basis, depending
on the Clifford unitary Ui. This is why these are also referred to as Pauli measurements. The hope
in this choice of ensemble is that it may be better adjusted to measuring local observables of the form
O = O1 ⊗ · · · ⊗ Or ⊗ 1

⊗(n−r) which only act non-trivially on r qubits.
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Computing the shadow estimator. Because all of the expressions factorize, we can re-use our com-
putations from Sec. 3.2.1. For instance,

EU,x = (U†
1 ⊗ · · · ⊗ U†

n)|x1, . . . , xn ⟩⟨x1, . . . , xn|(U1 ⊗ · · · ⊗ Un)

=
n⊗

i=1

U†
i |xi ⟩⟨xi|Ui =

n⊗
i=1

EUi ,xi . (3.42)

Hence, the frame operator becomes

S =
1

|Cl1|n ∑
U1,...,Un∈Cl1

∑
x∈{0,1}n

n⊗
i=1

|EUi ,xi )(EUi ,xi | = S⊗n
1 , (3.43)

where S1 is the local frame operator for which we can use Eq. (3.21) with d = 2:

S1 =
1

|Cl1| ∑
U∈Cl1

∑
x∈{0,1}

|EU,x )(EU,x| =
1
3
(2D + id) . (3.44)

In particular, S−1 = (3id − 2D)⊗n by Eq. (3.22). For our r-local observable O = O1 ⊗ · · · ⊗ Or ⊗
1
⊗(n−r) we can then use that each factor (3id − 2D) preserves trace such that

ôU,x = (O |S−1 |EU,x) (3.45)

=
r

∏
i=1

(Oi |3id − 2D|EUi ,xi)
n

∏
i=r+1

(1|EUi ,xi) (3.46)

=
r

∏
i=1

ôi,Ui ,xi (3.47)

=
r

∏
i=1

(
3 tr(OiU†

i |xi ⟩⟨xi|Ui)− tr(Oi)
)

. (3.48)

Number of measurements. Next, we compute the variance of ô. Because the estimator only de-
pends on the first r qubits we can resum the remaining local terms inside the Born probability using
that 1

|Cl1| ∑V∈Cl1 ∑y∈{0,1} V†|y⟩⟨y|V = 1

E[ô2] =
1

|Cl1|n ∑
U∈Cln

1

∑
x∈{0,1}n

r

∏
i=1

ô2
i,Ui ,xi

tr
( n⊗

i=1

U†
i |xi ⟩⟨xi|Uiρ

)
(3.49)

=
1

|Cl1|r ∑
U∈Clr1

∑
x∈{0,1}r

r

∏
i=1

ô2
i,Ui ,xi

tr
( r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ⊗ 1

⊗(n−r)ρ

)
(3.50)

=
1

|Cl1|r ∑
U∈Clr1

∑
x∈{0,1}r

r

∏
i=1

ô2
i,Ui ,xi

tr
( r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ρ′

)
, (3.51)

where ρ′ = trr+1,...,n ρ is the reduced state on the first r qubits.
In the following, we concentrate on the case that O = σ1 ⊗ · · · ⊗ σr ⊗ 1

⊗(n−r) is a Pauli operator
supported on r qubits (here σi ∈ {X, Y, Z}) and refer to Ref. [5] for general r-local observables. Using
the explicit form of the shadow estimator (3.48), we can then compute in analogy to Sec. 3.2.1:

E[ô2] =
1

|Cl1|r ∑
U∈Cln

1

∑
x∈{0,1}r

r

∏
i=1

9 tr(σiU†
i |xi ⟩⟨xi|Ui)

2 tr

(
r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ρ′

)
(3.52)

= tr

[
1
⊗2
r ⊗ ρ′

r⊗
i=1

(
9

|Cl1| ∑
U∈Cl1

∑
x∈{0,1}

(U†
i |xi ⟩⟨xi|Ui)

⊗3σ⊗2
i ⊗ 11

)]
(3.53)

= tr

[
1
⊗2
r ⊗ ρ′

r⊗
i=1

(
3
4 ∑

π∈S3

Rπσ⊗2
i ⊗ 11

)]
. (3.54)
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In the last step, we used the previous computation (3.35) (for d = 2). We can now perform the partial
trace over the first two systems based on the previous graphical calculus (3.36):

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
= tr(σ2

i )1+ 2σ2
i = 41 . (3.55)

Here, we used that Pauli operators square to the identity: X2 = Y2 = Z2 = 1. Hence, we obtain the
following variance from Eq. (3.54):

Var[ô] ≤ E[ô2] = tr

[
ρ′

r⊗
i=1

(31)

]
= 3r . (3.56)

Discussion of shadow estimation with local Clifford unitaries. To be done.

3.2.3 Other usecases

To be done.

3.3 Further reading

To be done.
Recall that the n-qudit Clifford group for prime qudit dimension q > 2 does not form a unitary

3-design and thus the variance calculations in Sec. 3.2.1 do not apply to this case. However, using
more advanced techniques, the variance of shadow estimation was very recently computed in this
case as well [6, 7]. Perhaps surprisingly, only a small correction depending on the qudit dimension q
was found:

Var[ô] ≤ d + 1
d + 2

(
(2q − 3)∥O0∥2

2 + 2∥O0∥2
∞
)

(for Cliffords in prime local dimension q) . (3.57)

This implies that the discussion in the qubit case also applies to qudits if the local dimension is not
too large.



CHAPTER 4

QUANTUM RANDOMNESS II

4.1 Random quantum circuits

To be done.

30



CHAPTER 5

RANDOM DYNAMICS IN MANY-BODY SYSTEMS

5.1 Entanglement dynamics and membrane picture

To be done.

5.2 Quantum scrambling in chaotic systems

To be done.
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APPENDIX A

SOME LINEAR ALGEBRA

This section gives a basic introduction to the linear algebraic concepts used in this course. Most of
this should already be known from linear algebra and quantum mechanics lectures. At this point, the
lectures notes are more detailed than the lecture to achieve a certain self-containement of the notes
and provide a reference for later stages of the course.

A.1 States, operators, superoperators

State space As usual, quantum mechanics is modeled on a Hilbert space H, which we take, in good
quantum info tradition, to be finite-dimensional for the remainder of this course. Hence, we can simply
think of H = Cd with the standard basis |x⟩ labeled by integers x = 0, 1, . . . , d − 1, and the standard
inner product

⟨ψ |φ⟩ =
d−1

∑
x=0

ψ̄x φx , (A.1)

where ψx = ⟨x |ψ⟩ and φx = ⟨x |φ⟩ are the coefficients in the standard basis. Typically, we take
vectors ψ ∈ H to be normalized: ⟨ψ |ψ⟩ = 1.

The notation of the inner product as a ‘bracket’ motivates the popular Dirac or bra-ket notation
which we adopt here: In this context, vectors ψ ∈ H are called kets and written as |ψ⟩. The corre-
sponding bra is a dual vector ⟨ψ| ∈ H∗ and given by the linear form H ∋ φ 7→ ⟨ψ |φ⟩.1 While the pair-
ing between a bra and ket yields the inner product (the ‘bracket’), the pairing between a ket and bra
forms a so-called outer product |ψ⟩⟨φ| which is a linear operator on H that acts as H ∋ χ 7→ |ψ⟩⟨φ |χ⟩.

Linear operators The vector space of all linear operators A : H → H is denoted by L(H). For any
A ∈ H, its adjoint A† is the linear operator for which

⟨ψ |Aφ⟩ = ⟨A†ψ |φ⟩ , ∀ψ, φ ∈ H . (A.2)

If represented in an orthonormal basis, such as the standard basis, the adjoint operator is the conju-
gate transpose matrix, A† = Ā⊤.

Definition A.1. In the following, we define some relevant classes of operators:

• Hermitian (or self-adjoint) operator: A ∈ L(H) such that A† = A. Hermitian operators have only real
eigenvalues and an orthonormal eigenbasis.

• Unitary operator: U ∈ L(H) such that U†U = UU† = 1.

• Positive semi-definite (psd) operator: Hermitian A ∈ L(H) with only non-negative eigenvalues. We
write A ≥ 0.

• Projector: Hermitian P ∈ L(H) such that P2 = P.

• Quantum state: ρ ∈ L(H) such that ρ ≥ and tr ρ = 1. ρ is called pure if it is a projector: ρ2 = ρ.
Pure states have rank one and are of the form ρ = |ψ⟩⟨ψ|.

Finally, the unitaries on H form the unitary group U(H) = U(d).
1In mathematics, this is called the Riesz representation theorem.
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The vector space End(H) of linear operators on H forms a Hilbert space of dimension (dimH) =
d2 in its own right with the Hilbert-Schmidt or trace inner product:

(X |Y) := tr(X†Y). (A.3)

In particular, we can introduce an orthonormal operator basis as a set of operators A1, . . . , Ad2 such
that (Ai |Aj) = δij. We will now introduce an import example of such a basis, the Pauli basis.

Example A.1: Pauli basis

Recall the Pauli operators

σ0,1 ≡ X =

(
0 1
1 0

)
, σ1,1 ≡ Y =

(
0 −i
i 0

)
, σ1,0 ≡ Z =

(
1 0
0 −1

)
, (A.4)

which we complement with the identity σ0,0 = 1. Then, the multi-qubit Pauli operators
on H = (C2)⊗n are simply given by all possible tensor products of the single-qubit Pauli
operators, in formula:

σa := σa1,a2 ⊗ · · · ⊗ σa2n−1,a2n , a ∈ Z2n
2 . (A.5)

Pauli operators are orthogonal, (σa |σb) = 2nδa,b . In particular, the normalized Pauli oper-
ators σ̂a = 2−n/2σa form an orthonormal operator basis. Note that Pauli operators can be
generalized to arbitary dimensions and they give rise to an orthonormal operator basis in
any of those.

We leave it as an exercise to show some basic properties of Pauli operators.

Exercise A.1 (Properties of Pauli operators). Using the definition of Pauli operators, Eq. (A.5), show the
following properties:

(a) σ†
a = σa and σ2

a = 1, i.e. the multi-qubit Pauli operators are both Hermitian and unitary.

(b) σaσb ∝ σa+b, where addition is in Z2n
2 , i.e. modulo two.

(c) σaσb = (−1)[a,b]σbσa where [a, b] := ∑n
i=1 aibn+i + an+ibi.

(d) (σa |σb) = 2nδa,b.

Superoperators and quantum channels Following a common nomenclature, we refer to linear
maps ϕ : L(H) → L(H) as superoperators (on H). We call ϕ positivity-preserving or simply posi-
tive iff ϕ(A) ≥ 0 for all A ≥ 0. As it turns out, positive maps are not necessarily positive when we
let them act on a subsystem of a composite system, i.e. if we consider ϕ ⊗ idA for some auxillary
system A. Thus, we say that ϕ is completely positive iff ϕ ⊗ idA is positive for any auxillary system A.
Completely positive maps are the ones which we consider ‘physical’, as the map quantum states to
quantum states. This leads us to the definition of a quantum channel:

Definition A.2 (Quantum channel). A quantum channel is a superoperator ϕ that is completely positive
and trace-preserving, this is ϕ ⊗ idA is positive for any auxillary system A and tr(ϕ(A)) = tr(A) for all
A ∈ L(H). We call ϕ unital iff ϕ(1) = 1.
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Example A.2: Quantum channels

Some examples of quantum channels are the following:

• Unitary channels: ϕ(X) = UXU† for U ∈ U(H).

• Mixed-unitary channels: ϕ(X) = ∑i λiUiXU†
i for Ui ∈ U(H), λi ≥ 0, and ∑i λi = 1.

These are convex combinations of unitary channels.

• Dephasing channel: ϕ(X) = ∑x⟨x |X |x⟩|x⟩⟨x|.

• Reset channels: ϕ(X) = tr(X)ρ for a fixed quantum state ρ.

To denote superoperators, it is handy to introduce an ‘operator Dirac notation’ as follows: In
analogy to the usual Dirac notation, we use the Hilbert-Schmidt inner product to define operator kets
and bras by |Y) ≡ Y and (X| : Y 7→ (X |Y). Likewise, we can define outer products |X)(Y| which are
now linear maps on L(H), i.e. superoperators, acting as A 7→ (Y |A)X.

The ‘operator bra-ket notation’ is especially useful to expand a superoperator in an operator basis,
i.e. write down its matrix representation. Typically, we will use the (normalized) Pauli basis in this
context, but any orthonormal basis works similarly. To this end, we observe that id = ∑a|σ̂a )( σ̂a| and
thus

ϕ = ∑
a,b
|σ̂a)(σ̂a |ϕ | σ̂b)(σ̂b| =: ∑

a,b
ϕa,b|σ̂a )( σ̂b| (A.6)

The matrix (ϕa,b)a,b is the representation of ϕ in the Pauli basis. For quantum channels, this matrix
has certain properties, which we here leave as an exercise:

Exercise A.2. Let ϕ be a multi-qubit quantum channel and let (ϕa,b)a,b be its matrix representation in the
Pauli basis. Show that

(a) (ϕa,b)a,b is real.

(b) ϕa,0 = δa,0. If ϕ is unital, it also holds ϕ0,b = δ0,b, hence ϕ ≃
(

1 0
0 ∗

)
.

(c) Suppose ϕ is a Pauli channel, this is ϕ(X) = ∑a λaσaXσ†
a (for convex coefficients λa). Then, (ϕa,b)a,b

is diagonal (use Ex. A.1).

Norms Throughout this paper, we use Schatten p-norms which are defined for any linear map X ∈
L(V ,W) between Hilbert spaces V and W and p ∈ [1, ∞] as

∥X∥p :=
(

tr|X|p
) 1

p
=

(
d

∑
i=1

σ
p
i

) 1
p

, (A.7)

where |X| :=
√

X†X ∈ L(V) and σi ≥ 0 are the singular values of X, i.e. the square roots of the
eigenvalues of the positive semidefinite operator X†X. In particular, we use the trace norm p = 1, the
Hilbert-Schmidt norm p = 2, and the spectral norm p = ∞. The definition of Schatten norms only relies
on the Hilbert space structure of the underlying vector space, thus these norms can be defined for
operators and superoperators alike.

A.2 Non-orthonormal bases

Let ( fi)i∈[d] be a basis of a Hilbert space V . Thus, every v ∈ V has a unique expansion v = ∑i vi fi.
If ( fi)i is orthonormal, then the coefficients vi can be simply expressed as vi = ⟨ fi |v⟩. This can be
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generalized to arbitrary bases by introducing the concept of a dual basis ( f̃i)i which is defined by the
linear system of equations

⟨ f̃i | f j⟩ = δi,j . (A.8)

As ( fi)i is a basis, this system has a unique solution. It is now straightforward to verify that

⟨ f̃i |v⟩ = ∑
j

vj⟨ f̃i | f j⟩ = vi . (A.9)

Moreover, this implies that (
∑

i
| fi ⟩⟨ f̃i|

)
(v) = ∑

i
vi fi = v , (A.10)

for all v ∈ V and hence ∑i| fi ⟩⟨ f̃i| = idV .
The dual basis can be computed using the Gram matrix

Gi,j := ⟨vi |vj⟩ . (A.11)

One can show that G is generally positive semi-definite and since the vi are linearly independent, the
eigenvalues are in fact strictly larger than zero. Hence, it is invertible and we define its inverse as
W := G−1. Then, the dual basis can be expressed as

ṽi := ∑
j

Wi,jvj . (A.12)

Indeed:
⟨ṽi |vj⟩ = ∑

k
Wi,k⟨vk |vj⟩ = ∑

k
Wi,kGk,j = δi,j . (A.13)
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