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CHAPTER 1

INTRODUCTION

Quantum information science is the field that studies how information is stored, processed, and trans-
mitted when it is governed by the laws of quantum mechanics. It includes areas such as quantum com-
puting, quantum communication, quantum cryptography, quantum sensing, and quantum error correction.
Although still relatively young, quantum information science has already had a profound impact on
many areas of physics, especially on the study of quantum systems composed of many interacting
particles, commonly referred to as many-body quantum systems.

Within this context, quantum circuits and tensor networks have emerged as essential tools to tackle
fundamental questions in quantum dynamics—from the mechanisms of thermalization and the emer-
gence of statistical mechanics in isolated systems, to the onset of quantum chaos and its deep connections
with black hole physics and holography in quantum gravity. Studying these phenomena in a concrete
setting is notoriously difficult, due to the exponential growth of the Hilbert space and the inherently
non-linear structure of quantum correlations. Random quantum circuits and tensor networks offer a
powerful way to overcome these challenges: they enable analytical and numerical progress through
disorder averaging, while capturing the typical behavior of generic quantum systems thanks to quan-
tum typicality arguments.

Crucially, the interplay between quantum information and many-body physics has not only re-
fined our understanding of traditional problems, but has also uncovered entirely new dynamical
phases of matter – phases that arise uniquely in programmable quantum devices. This so-called syn-
thetic quantum matter cannot be characterized by conventional local order parameters such as magne-
tization or current. Instead, its defining features are quantum informational, such as the structure of
entanglement or nonstabilizer (magic state) resources, or the system’s ability to preserve quantum in-
formation against noise and local errors. Understanding and classifying such phases requires a shift
in perspective –from symmetry and energetics to information content and computational complexity.

At the same time, random unitary dynamics, especially in the form of random quantum circuits,
have become indispensable tools in the NISQ (noisy intermediate-scale quantum) era. They provide
efficient and versatile frameworks for a wide range of applications, including the benchmarking and
verification of quantum computations, the characterization of noise in experimental platforms, and
the estimation of observables via shadow tomography. Far from being purely theoretical constructs,
these methods are implemented across various platforms – from superconducting qubits to cold
atoms – and are central to the ongoing development of near-term quantum technologies.

This course provides a pedagogical introduction to random unitaries and to several key methods
from quantum information theory, with a focus on their application to many-body physics. A sub-
stantial part of the course covers research-level topics introduced only in the past few years, offering
a unique opportunity to engage with current questions at the interface between two rapidly evolving
fields. It is also intended to serve as a solid preparation to pursue a Master’s thesis, a doctorate or
work in the private for these areas.

1.1 Overview

The structure of the course is as follows. We begin with a chapter on permutations and a graphical
calculus, which will provide the foundation for the treatment of randomization methods throughout
the course. We then introduce the core randomization concepts in two parts, Quantum Randomness I
and II—each followed by a chapter that connects the methods to applications in many-body systems.

1. In Quantum Randomness I (Ch. 2), we introduce Weingarten calculus, the central toolbox for
computing averages over the unitary group, which naturally arise when considering statistical
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properties of random evolutions. We also study unitary designs, which provide efficient approx-
imations of Haar randomness and play an important role in practical implementations.

2. In Ch. 3, we present the framework of classical shadows. Introduced around 2020, classical shad-
ows offer an efficient way to extract information about quantum states using only a small
number of randomized measurements. This technique has already found widespread use in
experimental platforms and continues to inspire a growing body of research.

3. In Quantum Randomness II (Ch. 4), we explore random quantum circuits in detail. These mod-
els provide an efficient and physically motivated approach to generate randomness in quantum
many-body systems, and they serve as minimal models for chaotic quantum dynamics.

4. In Ch. 5, we show how random circuits can be used to model scrambling, thermalization, and
information spreading in interacting quantum systems. These models also offer connections to
quantum chaos, complexity growth, and typicality in many-body physics.

Each chapter concludes with a short guide to the research literature, primarily in the form of original
articles, allowing students to explore further and connect the course material to current work in the
field.

1.2 Permutations and their combinatorics

Why permutations? A central theme of this course is the study of random unitaries and their ap-
plications in quantum many-body systems. To understand their behavior, we need to analyze the
statistics of random unitaries—specifically, we are interested in computing averages, variances, and
higher moments of functions involving random unitary matrices.

At first glance, this might seem daunting: computing integrals over the unitary group is, in gen-
eral, a highly nontrivial task. However, a powerful insight from representation theory, known as
Schur-Weyl duality, provides a way forward. This duality reveals a deep connection between the action
of the unitary group and the action of the permutation group, which allows us to reformulate complicated
integrals in terms of combinatorics of permutations.

This leads to the framework known as Weingarten calculus, which enables the exact evaluation
of many relevant averages over the unitary group. As a result, permutations will play a key role
throughout this course – not for abstract mathematical reasons, but because they offer a concrete and
computable handle on random quantum processes.

In this section, we will introduce the essential properties of permutations needed for our pur-
poses. While there is a rich and beautiful mathematical structure behind these ideas, we will focus
only on the aspects that are directly relevant for our discussion and applications. The interested
reader can consult the bibliography.

1.2.1 Permutations and Cycles

A permutation is a reordering of a finite set of elements. In this course, we consider permutations of
the set {1, 2, . . . , k}. We will denote permutations by Greek letters such as π, σ, τ, and so on. The set
of all permutations of k elements forms a group under composition, called the symmetric group, and
denoted by Sk.

Given a permutation σ ∈ Sk and an element x ∈ {1, . . . , k}, we write σ(x) to indicate the image of
x under σ. A common and explicit way to write a permutation is the two-line notation, where the first
row lists the original elements and the second row gives their images under the permutation:

σ =

(
1 2 . . . k

σ(1) σ(2) . . . σ(k)

)
. (1.1)
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Example 1.1: Explicit Notation of Permutations

An example of a permutation of four elements is:

σ =

(
1 2 3 4
3 1 4 2

)
. (1.2)

This means that the permutation acts as:

σ(1) = 3, σ(2) = 1, σ(3) = 4, σ(4) = 2. (1.3)

The group operation in Sk is the composition of permutations, denoted by σ · τ for σ, τ ∈ Sk, and
defined by

(σ · τ)(x) = σ(τ(x)) for all x ∈ {1, . . . , k}. (1.4)

Note that permutation composition is applied from right to left: τ acts first, followed by σ.

Example 1.2: Product of Permutations

Consider the following two permutations of k = 4 elements:

σ =

(
1 2 3 4
3 1 4 2

)
, τ =

(
1 2 3 4
4 2 3 1

)
. (1.5)

To compute the composition (τ · σ)(x) = τ(σ(x)), we apply σ first and then τ:

σ(1) = 3, τ(σ(1)) = τ(3) = 3,
σ(2) = 1, τ(σ(2)) = τ(1) = 4,
σ(3) = 4, τ(σ(3)) = τ(4) = 1,
σ(4) = 2, τ(σ(4)) = τ(2) = 2.

(1.6)

Putting everything together, we find:

τ · σ =

(
1 2 3 4
3 4 1 2

)
. (1.7)

It is important to emphasize that for k ≥ 3, the symmetric group Sk is non-abelian, meaning that
the order of composition matters – in general, σ · τ ̸= τ · σ.

Exercise 1.1. Consider the permutations from Example 1.2. Compute the product σ · τ, and verify that it
differs from τ · σ.

The symmetric group contains a special element called the identity permutation, denoted by ι,
which leaves all elements unchanged:

ι =

(
1 2 . . . k
1 2 . . . k

)
. (1.8)

By definition, composition with the identity does not change the permutation:

ι · σ = σ = σ · ι. (1.9)

Moreover, every permutation σ ∈ Sk has an inverse σ−1 such that:

σ · σ−1 = ι = σ−1 · σ. (1.10)

To compute the inverse of a permutation π, for each index i ∈ {1, 2, . . . , k} we set π−1(π(i)) = ι(i) =
i. The resulting list π−1 is the inverse permutation.
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Example 1.3: Inverse of a Permutation

Consider the following two permutations of k = 5 elements:

σ =

(
1 2 3 4 5
3 5 1 2 4

)
. (1.11)

To compute the inverse σ−1 we use the rule σ−1(σ(i)) ≡ i

σ(1) = 3 ⇒ σ−1(3) = 1

σ(2) = 5 ⇒ σ−1(5) = 2

σ(3) = 1 ⇒ σ−1(1) = 3

σ(4) = 2 ⇒ σ−1(2) = 4

σ(5) = 4 ⇒ σ−1(4) = 5

(1.12)

Reordering the list in terms of the argument, we find

σ−1 =

(
1 2 3 4 5
3 4 1 5 2

)
. (1.13)

A cyclic permutation, or simply a cycle, is a specific type of permutation in which a subset of ele-
ments is permuted in a closed loop, while all remaining elements remain fixed. Formally, an l-cycle
is a permutation that permutes r elements cyclically and leaves the other k − l elements unchanged.
The number l is called the length of the cycle.

Concretely, a cycle of length l means that there exists a subset {i1, i2, . . . , il} ⊂ {1, 2, . . . , k} such
that

σ(i1) = i2, σ(i2) = i3, . . . , σ(il−1) = il , σ(il) = i1, (1.14)

and for all other elements x /∈ {i1, . . . , il}, we have σ(x) = x.

Exercise 1.2 (Cyclic permutations). The following are examples of cyclic permutations:

τ =

(
1 2 3 4
2 3 4 1

)
, σ =

(
1 2 3 4 5
4 2 1 3 5

)
. (1.15)

Can you identify the subset {a1, . . . , al} that is cyclically permuted in each case? What is the length l of each
cycle? [Answer: For τ, r = l; for σ, r = l.]

One fundamental property of cycles is that any permutation can be decomposed into a product of
disjoint cycles. That is, for any σ ∈ Sk, there exists a unique set of cycles that act on mutually disjoint
subsets of {1, 2, . . . , k}. This decomposition is unique up to the order in which the cycles are written.
This motivates the cycle notation of permutations:

σ = (a1 a2 . . . aj1)(aj1+1 aj1+2 . . . aj2) . . . (ajr−1+1 ajr−1+2 . . . ajr) . (1.16)

Here, each tuple represents a cycle, and all elements am are drawn from {1, 2, . . . , k} without repeti-
tion. The integer r = #(σ) denotes the number of disjoint cycles in the decomposition of σ.

Let us now describe an explicit algorithm to obtain the cycle decomposition of a permutation, as
in Eq. (1.16). The idea is simple: we iteratively follow the action of the permutation until we return
to the starting point, keeping track of all visited elements.

(i) Start from the smallest unvisited element. Initially, this is x = 1. If 1 has already been included
in a previous cycle, move to the next smallest unvisited element.
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(ii) Construct a cycle by iterating the permutation. Begin by writing down x. Then repeatedly
apply the permutation π to generate the sequence

x, π(x), π(π(x)), π(π(π(x))), . . .

Continue this process until you return to the starting point x. The list of elements

(x π(x) π2(x) . . . π j−1(x)) (1.17)

forms a cycle of length j. Mark all of these elements as visited.

(iii) Repeat the process. Find the next smallest unvisited element and return to step (ii). Continue
until all elements have been visited. The full cycle decomposition of π is then obtained by
combining the individual cycles found in each iteration.

Example 1.4: Cycle decomposition

Consider the permutation

τ =

(
1 2 3 4 5
4 5 3 1 2

)
. (1.18)

We apply the cycle decomposition algorithm step by step:

• Start with 1:
1 τ7−→ 4 τ7−→ 1.

This gives the first cycle: (1 4). Mark 1 and 4 as visited.

• Next smallest unvisited element is 2:

2 τ7−→ 5 τ7−→ 2.

This gives the second cycle: (2 5). Mark 2 and 5 as visited.

• The last unvisited element is 3, and since

3 τ7−→ 3,

this is a fixed point (a 1-cycle), written as (3).

Combining the above, the full cycle decomposition is:

τ = (1 4)(2 5)(3). (1.19)

Note that the order in which disjoint cycles are written is irrelevant. For instance, in Example 1.4,
all of the following represent the same permutation:

τ = (1 4)(2 5)(3) = (2 5)(1 4)(3) = (3)(1 4)(2 5).

When the total number of elements k is clear from the context (e.g., k = 5 in this case), it is common
to omit one-cycles, also denoted fixed points, because these elements are understood to remain un-
changed under the permutation. Using this convention, the permutation in Example 1.4 is simply
written as:

τ = (1 4)(2 5). (1.20)

With this notation, the identity permutation is denoted by ι = (), which is shorthand for ι =
(1)(2) · · · (k) – that is, all elements are fixed.
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The cycle structure of a permutation, denoted by λ(π), is the list of the lengths of its disjoint
cycles. For example, the permutation τ = (1 4)(2 5) has cycle structure λ(τ) = (2, 2, 1). The number
of disjoint cycles is then given by the length of this list:

#(π) = |λ(π)|, for any π ∈ Sk . (1.21)

Example 1.5: Cycle Structure

Consider the following permutations of 6 elements

τ =

(
1 2 3 4 5 6
5 4 1 6 3 2

)
, σ =

(
1 2 3 4 5 6
5 2 6 4 1 3

)
. (1.22)

It is a simple exercise to show that their cycle decomposition is τ = (1, 5, 3)(2, 4, 6) and
σ = (1, 5)(3, 6) [which is a shorthand notation for σ = (1, 5)(3, 6)(2)(4)]. The permuta-
tion τ has two cycles of length 3, hence the cycle structure is λ(τ) = (3, 3). Instead, σ is
composed of two 2-cycles and two 1-cycles, so the cycle structure is λ(σ) = (2, 2, 1, 1).

Exercise 1.3. Show that conjugation preserves the cycle structure of a permutation. That is, for any σ, π ∈ Sk,
prove that

λ(πσπ−1) = λ(σ).

Transpositions, also known as swaps, are a special class of permutations that exchange exactly two
elements and leave all others unchanged. A transposition has the form:

σ = (i j) =
(

1 . . . i . . . j . . . k
1 . . . j . . . i . . . k

)
. (1.23)

It is straightforward to verify that any permutation can be written as a product of transpositions.
However, unlike the decomposition into disjoint cycles, this representation is not unique – a given
permutation can be written in many different ways as a product of transpositions. While this makes
the transposition decomposition less suitable for labeling permutations, it is extremely useful in alge-
braic manipulations. For instance, it turns out that the number of transpositions in any representation
is always odd or always even, which justifies the definition of the sign of a permutation:

sgn(σ) = (−1)#transpositions in σ . (1.24)

The sign function is important for the construction of representations of Sk and plays an important
role in multilinear algebra, in particular in the definition of the determinant of a matrix.

We conclude this section by reviewing some structural aspects of the symmetric groups Sk for
varying values of k. A key property is that the group Sk naturally embeds into Sk+1: that is, every
permutation of k elements can be viewed as a permutation of k + 1 elements that leaves the (k + 1)-th
element fixed. More formally, we can write

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, 2, . . . , k} , (1.25)

where the union is disjoint and the second term represents all permutations obtained by composing
an element of Sk with a transposition that swaps k + 1 with one of the first k elements.

This recursive structure is useful for establishing many properties of permutations by induction
on k. A simple but important example is the total number of elements in the symmetric group.

Theorem 1.1 (Counting of Permutations). Given k ≥ 1, the total number of permutations in Sk is

| Sk | = k!. (1.26)
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Proof. The total number of permutations is given by the factorial k! = k(k − 1) · · · 2 · 1, with the
convention that 0! = 1. To prove this, we use induction.

For k = 1, the symmetric group S1 = {ι} consists only of the identity permutation, so | S1 | = 1 =
1!.

Assume now that | Sk | = k! for some k ≥ 1. From Eq. (1.25), the next symmetric group can be
written as

Sk+1 = Sk ⊔ {(j k + 1) · σ : σ ∈ Sk, j = 1, . . . , k} . (1.27)

There are k possible values of j, and for each j, σ runs over all k! permutations in Sk. Hence,

| Sk+1 | = | Sk |+ k · | Sk | = k! + k · k! = (k + 1) · k! = (k + 1)!. (1.28)

This completes the proof by induction.

Consider now the following permutations of six elements:

σ1 = (1 2 3)(5 6), σ2 = (2 4 6 1), σ3 = (1 2)(3 4)(5 6). (1.29)

While their cycle structures differ, all three permutations have exactly three disjoint cycles. This
illustrates that simply counting the number of cycles is a coarser classification than specifying the
full cycle structure.

In many computations throughout this course, we will be interested in the number of permuta-
tions in Sk with a fixed number of cycles r = #(σ). This quantity is given by the unsigned Stirling
numbers of the first kind, denoted by c(k, r). These numbers satisfy the recursive relation:

c(k + 1, r) = k · c(k, r) + c(k, r − 1), (1.30)

which allows them to be computed inductively, without explicitly listing all permutations. These
numbers form a triangle similar to Pascal’s triangle and are tabulated up to k = 10 in the Appendix.

Starting with the base case k = 1, where S1 = {()}, we find:

c(1, 0) = 0, c(1, 1) = 1. (1.31)

Using the recurrence, the next values for k = 2 are:

c(2, 0) = 0, c(2, 1) = 1, c(2, 2) = 1. (1.32)

Exercise 1.4. Compute the values c(k, r) for 1 ≤ r ≤ k when k = 3 and k = 4. Verify that:

k

∑
r=1

c(k, r) = k! ,
k

∑
r=1

c(k, r)xr = x(x + 1) · · · (x + k − 1) . (1.33)

The first identity reflects the fact that summing over all permutations with a fixed number of cycles r recovers
the total number of permutations in Sk, while the second gives another combinatorial interpretation of c(k, r)
as the coefficients in the power series of the ‘rising factorial’.

1.2.2 The Action of Permutations on Quantum States

Throughout this course, we work with a d-dimensional Hilbert space H = Cd, equipped with the
standard orthonormal basis {|x⟩}d−1

x=0. Our main object of interest is the k-fold tensor product space
H⊗k = (Cd)⊗k, often referred to as the replica space in the many-body literature.

Elements of the symmetric group Sk act naturally on this space by permuting the tensor factors.
Concretely, given a permutation σ ∈ Sk, its action on a product basis state is defined as:

Rσ|x1, x2, . . . , xk⟩ = |xσ(1), xσ(2), . . . , xσ(k)⟩ . (1.34)
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Consider an example with k = 4 and σ = (1 4 3)(2) ∈ S4. We have

Rσ|x1, x2, x3, x4⟩ = |x4, x2, x1, x3⟩ . (1.35)

Equation (1.34) defines a linear (even unitary) operator Rσ on H⊗k. The map

R : Sk −→ U(H⊗k), σ 7→ Rσ (1.36)

is a so-called group representation of Sk. This means it respects the group structure of Sk, more specifi-
cally:

Rσπ = RπRσ, Rι = 1, Rσ−1 = R−1
σ , R†

σ = R−1
σ . (1.37)

These properties follow directly from the definition in Eq. (1.34). As an explicit verification of the
composition law, let us define x̃i := xσ(i) and compute:

RπRσ|x1, x2, . . . , xk⟩ = Rπ|xσ(1), . . . , xσ(k)⟩ = |x̃π(1), . . . , x̃π(k)⟩ (1.38)

= |x(σ·π)(1), . . . , x(σ·π)(k)⟩ = Rσ·π|x1, x2, . . . , xk⟩. (1.39)

We leave the verification of the other axioms – such as unitarity and inverse consistency – as an
exercise.

Exercise 1.5. Verify that R defines a unitary representation of the symmetric group Sk, i.e., check Eq. (1.37).

Exercise 1.6. Show that permutations act on tensor products of operators as follows:

Rσ(A1 ⊗ A2 ⊗ · · · ⊗ Ak)R†
σ = Aσ(1) ⊗ Aσ(2) ⊗ · · · ⊗ Aσ(k). (1.40)

Hint: Apply both sides to a product basis state.

Composite Systems In practice, we often work with multi-qudit systems described by a Hilbert space
of the form H = (Cq)⊗n, corresponding to n qudits of local dimension q. In this setting, the k-fold
copy of the system is given by the tensor product

((Cq)⊗n)⊗k, (1.41)

which can be naturally visualized as a k × n grid of qudits (see Fig. 1.1). Each row represents one
replica of the full system, and each column represents the k copies of a single local qudit.

Quantum operations such as global unitaries typically act row-wise, that is, identically and inde-
pendently on each copy. Such operations are of the form

U⊗k, where U ∈ U((Cq)⊗n), (1.42)

meaning that the unitary acts in parallel across the k rows.
In contrast, permutations act by permuting the rows, i.e., the k copies of each local qudit. This

operation is performed column-wise, and can be implemented by applying the same permutation
operator to each column in parallel. This leads to a convenient factorized structure: if we reinterpret
the total space via the isomorphism

((Cq)⊗n)⊗k ≃ ((Cq)⊗k)⊗n, (1.43)

then the permutation operator Rπ acting on the full system decomposes as

Rπ = r⊗n
π , (1.44)

where rπ acts on the k-dimensional replica space associated with each local qudit. This “horizon-
tal” factorization is exactly what is depicted in Fig. 1.1 and will be essential in constructing efficient
representations of randomized operations throughout the course.
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= Cq

U

rπ

× k

× n

Figure 1.1: The Hilbert space ((Cq)⊗n)⊗k de-
picted as a k×n grid where every point corre-
sponds to a copy of Cq. Unitaries U ∈ U(qn)
act row-wise on the grid, while permutations
π ∈ Sk act column-wise.

Traces Traces will play a fundamental role for explicit computations. Here, we derive a formula
for the trace of permutation operators and for the trace of a product operator multiplied with a
permutation. Let us first consider the cyclic permutation γ = (1, 2, . . . , k). Then, we compute

tr(Rγ) =
d−1

∑
x1,...,xk=0

⟨x1, . . . , xk |Rγ |x1, . . . , xk⟩

= ∑
x1,...,xk

⟨x1, . . . , xk |x2, . . . , xk, x1⟩ = ∑
x1,...,xk

δx1,x2 δx2,x3 . . . δxk−1,xk δxk ,x1 = d. (1.45)

Next, consider an arbitrary permutation σ. Then, we can find a permutation π such that πσπ−1 =
(1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) where r = #σ is the number of cycles in
σ (recall that the cycle structures of σ and πσπ−1 have to necessarily match, cf. Ex. 1.3). But Rπσπ−1

is simply a tensor product of cyclic permutations on H⊗b1 , . . . ,H⊗(b2−b1), . . . ,H⊗(br−br−1) and thus

tr(Rσ) = tr(Rπσπ−1) =
r

∏
i=1

d = dr = d#σ . (1.46)

Beyond this simple situation, we often need to compute the trace of product operators multiplied
with a permutation operator, i.e. an expression of the form tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ). Here, we can
follow the same arguments as above: First, if σ = γ = (1, . . . , k) is the cyclic permutation, then

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRγ) = ∑
x1,...,xk

⟨x1, . . . , xk |A1 ⊗ A2 ⊗ · · · ⊗ Ak |x2, x3, . . . , xk, x1⟩ (1.47)

= ∑
x1,...,xk

(A1)x1,x2(A2)x2,x3 · · · (Ak)xk ,x1 = tr(A1A2 · · · Ak). (1.48)

Next, for an arbitrary σ = (a1, . . . , aj1)(aj1+1, . . . , aj2) . . . (ajr−1+1, . . . , ak), find again a permutation π

that ‘orders the cycles’ as πσπ−1 = (1, . . . , b1)(b1 + 1, b1 + 2, . . . , b2) · · · (br−1 + 1, br−1 + 2, . . . , br) and
then use Ex. 1.6 to conclude that

tr(A1 ⊗ A2 ⊗ · · · ⊗ AkRσ) = tr(Aπ(1) ⊗ · · · ⊗ Aπ(k)Rπσπ−1) (1.49)

= tr(Aπ(1) · · · Aπ(b1)) · · · tr(Aπ(br−1+1) · · · Aπ(br)) (1.50)

= tr(Aa1 · · · Aaj1
) · · · tr(Aajr−1+1+1 · · · Aak). (1.51)

For the important case when A1 = A2 = · · · = Ak, the final result is simplified to

tr(A⊗kRσ) = ∏
c∈λ(σ)

tr(Ac), (1.52)

where λ(σ) is the cycle structure of the permutation σ.
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Symmetric subspace Throughout this course, symmetries under permutations will be a fundamen-
tal role, in particular the subspace of (Cd)⊗k composed of vectors that are left invariant by permuta-
tions:

Symk,d ≡ Sym((Cd)⊗k) := {ψ ∈ (Cd)⊗k | Rσ|ψ⟩ = |ψ⟩ ∀σ ∈ Sk} . (1.53)

We will now show that the projector onto Symk,d is

PSym,k,d =
1
k! ∑

σ∈Sk

Rσ . (1.54)

To see this, we first check that PSym,k,d is an orthogonal projector:

P2
Sym,k,d =

1
(k!)2 ∑

σ,π∈Sk

Rσπ . =
1
k! ∑

σ∈Sk

1
k! ∑

τ∈Sk

Rτ = PSym,k,d , (1.55)

P†
Sym,k,d =

1
k! ∑

σ∈Sk

Rσ−1 =
1
k! ∑

π∈Sk

Rπ = PSym,k,d , (1.56)

where we substituted variables as τ = σπ and π = σ−1, respectively, and used that the sum is
invariant under the change of variables. Next, note that for all ψ ∈ Symk,d:

PSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rσ|ψ⟩ =
1
k! ∑

σ∈Sk

|ψ⟩ = |ψ⟩ , (1.57)

thus, Symk,d is in the range of PSym,k,d. Moreover, if PSym,k,d|ψ⟩ = |ψ⟩, then

Rπ|ψ⟩ = RπPSym,k,d|ψ⟩ =
1
k! ∑

σ∈Sk

Rπσ|ψ⟩ =
1
k! ∑

τ∈Sk

Rτ|ψ⟩ = PSym,k,d|ψ⟩ = |ψ⟩ , (1.58)

and thus the range of PSym,k,d is exactly Symk,d. We can now compute the dimension of the symmetric
subspace using Eq. (1.46) and Ex. 1.4 as

dim Symk,d = tr PSym,k,d =
1
k! ∑

σ∈Sk

d#σ =
1
k!

k

∑
r=1

c(k, r)dr =
d(d + 1) · · · (d + k − 1)

k!
=

(
d + k − 1

k

)
.

(1.59)

Graphical representation While the above methodologies are generic and straightforward, the al-
gebra is often cumbersome. For this reason, it is useful to introduce a graphical notation to represent
permutation. Similar to the Feynman diagrammatics for perturbative expansions, this is simply a
bookkeeping of the operation previously described.

We denote permutations as lines connecting the list {1, 2, . . . , k} to the output {σ(1), σ(2), . . . , σ(k)}.
For example, given τ = (12)(35)(4) a 5 elements permutation, we can represent it as

(12)(35)(4) ∼=

1

2

3

4

5

(1.60)
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This notation is particularly useful, since it makes computing products particularly easy. For exam-
ple, the product of τ with σ = (123)(4)(5), we simply need to follow the lines after connecting them,
specifically

σ · τ ∼=

1

2

3

4

5

∼=

1

2

3

4

5

∼= (235)(1)(4) (1.61)

Since the group structure is the same for the representations of Sk, we can use the same notation also
for the operators {Rσ : σ ∈ Sk}. For representations, the diagrammatic notation allows also to include
traces and product by operators.

Traces require to add a curve that connect initial and final endpoints. For example:

tr(Rσ) = = ( )
#(σ)

= d#(σ). (1.62)

Similarly, for operators we have

tr(A⊗kRσ) =
A

A

A

A

A

= tr(A3)tr(A)2 (1.63)



CHAPTER 2

QUANTUM RANDOMNESS I

In this section, we lay the foundation for one of the central objects in quantum information theory and
random quantum systems: the Haar twirl. This is the average over the unitary group of a replicated
quantum channel, defined as

Mk(A) :=
∫

U(d)
U⊗k AU⊗k,†dU . (2.1)

This map, known as the k-th unitary twirl, appears repeatedly throughout these notes and plays a
fundamental role in both quantum information theory and many-body physics. It arises in contexts
ranging from randomized benchmarking and quantum designs to entanglement theory, thermaliza-
tion, and quantum chaos.

We begin by briefly discussing the structure of the Haar measure dU on the unitary group U(d),
and how random unitaries can be parametrized in practice. We then turn to the evaluation of the
Haar twirl integral (2.1). The key observation is that Mk(A) lies in the so-called commutant of U⊗k,
i.e., the space of operators that commute with all U⊗k for U ∈ U(d). A powerful result from repre-
sentation theory – the Schur-Weyl duality – tells us that this commutant is spanned by the action of
the symmetric group via permutations on H⊗k.

This insight allows us to express the Haar twirl as a linear combination over permutations, with
coefficients given by the Weingarten calculus – a systematic method to evaluate integrals over the
unitary group. The remainder of this section is devoted to developing these tools and applying them
to compute Mk(A) explicitly.

2.1 What is a Haar measure?

On the real line R, there is a unique measure dx satisfying two simple but fundamental properties

d(x + y) = dx (translation invariance) ,
∫ 1

0
dx = 1 (unit volume) . (2.2)

This measure represents what we intuitively mean by a uniform distribution: translation invariance
ensures that no point is preferred over any other. However, since R is non-compact, this measure
assigns infinite volume to the full space, and thus cannot be normalized to a probability measure. To
work around this, we typically restrict to a compact interval such as [0, 1], which provides a natural
normalization.

Remarkably, this idea of defining an invariant, uniform measure generalizes to far more abstract
settings. Whenever the underlying set carries a suitable group structure, one can often define a natu-
ral measure that is invariant under group multiplication. More precisely, if G is a compact (Hausdorff
topological) group then there exists a unique measure dg on G that is both

left/right invariant dg = d(hg) = d(gh) (2.3)

normalized
∫

G
dg = 1 . (2.4)

This unique measure is called the Haar (or uniform) measure on G.
In this course, our primary interest lies in the unitary group U(d), which is compact and satisfied

the condition above. Concretely, the Haar measure dU on U(d) satisfies

dU = d(UV) = d(VU)
∫

U(d)
dU = 1 . (2.5)

14
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This measure provides a rigorous definition of what it means to sample a unitary matrix uniformly at
random. In principle, one could perform such an integration by explicitly parametrizing the unitaries
and integrating over the associated coordinates. However, this approach becomes highly impracti-
cal as the dimension d increases, due to the complicated geometry and rapidly growing number of
parameters. Instead, we will introduce more powerful techniques—based on symmetry and rep-
resentation theory—that allow us to compute Haar integrals in an efficient and conceptually clean
way.

Example 2.1: Cycle Structure

Consider d = 2 and let us compute the Haar average∫
U(2)

dU UAU† (2.6)

for a general operator

A =

(
a11 a12
a21 a22

)
. (2.7)

A generic unitary on U(2) is given by

U(θ, ϕ, ψ) =

(
cos θ eiϕ sin θ

eiψ sin θ ei(ϕ+ψ) cos θ

)
(2.8)

with the Haar measure dU = (4π2)−1 sin(2θ)dθdϕdψ with θ ∈ [0, π/2] and ϕ, ψ ∈ [0, 2π].
(We ignore the global phase since it cancels trivially in UAU†. The integral acts on each
element of the total matrix (UAU†)ij = ∑k,l Ui,k Ak,lŪj,l . For concreteness, let us compute
only the entry i = j = 1: (U† AU)11 = u11a11ū11 + u11a12ū12 + u12a21ū11 + u22a22ū22. Using
the well known formula

∫
dαeinα = δn,0, we find that the terms a12 and a21 simplify. The

remaining computation requires∫ π/2

0
dθ sin(2θ)(cos2 θa11 + sin2 θa22) =

1
2
(a11 + a22). (2.9)

Working out the details for the other indices, we obtain∫
U(2)

dU UAU† =
1
2

(
a11 + a22 0

0 a11 + a22

)
=

1
2

tr(A)I. (2.10)

2.1.1 The unitary commutant

In this section, we study the subspace of operators that commute with U⊗k, which we call the (k-fold)
commutant of U(d):

Commk = {A ∈ L(H⊗k) |U⊗k A = AU⊗k ∀U ∈ U(d)} . (2.11)

We care about this because of the following, elementary observation:

Lemma 2.1. Mk(A) ∈ Commk for all A ∈ L(H⊗k). In fact, every element in Commk is of the form Mk(A).

Proof. Clearly, if A commutes with all U⊗k, then Mk(A) = A, i.e. every element in Commk is of the
form Mk(A). Vice versa, if B = Mk(A), then, by the invariance of the Haar measure:

U⊗kBU⊗k,† =
∫

U(d)
(UV)⊗k A(UV)⊗k,†dV =

∫
U(d)

V⊗k AV⊗k,†dV = B , ∀U ∈ U(d) . (2.12)

Thus, B ∈ Commk.
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A central step in understanding the commutant is to note that the representation of Sk on H⊗k

introduced in Sec. 1.2.2, this is Rπ|x1, . . . , xk⟩ = |xπ(1), . . . , xπ(k)⟩, clearly commutes with U⊗k. In
representation-theoretic terms, the representations of U(d) and Sk are said to be dual to each other.
This implies that the permutations are contained in the unitary commutant, Rπ ∈ Commk for all
π ∈ Sk. A fundamental result in representation theory, Schur-Weyl duality, even states that every
element in the commutant is a linear combination of permutations. We will only state this result here
and refer for a proof to the literature [tbd].

Theorem 2.1 (Schur-Weyl duality). The k-fold unitary commutant Commk is spanned by {Rσ | σ ∈ Sk}.
Vice versa, the commutant of {Rσ | σ ∈ Sk} is spanned by {U⊗k |U ∈ U(d)}

A natural question to ask is whether the permutations form a basis for the commutant. Intrigu-
ingly, this is the case if the dimension d is large enough:

Lemma 2.2. The set {Rσ | σ ∈ Sk} is linearly independent for d ≥ k .

Proof. We consider the standard basis of Cd, which we here denote as |1⟩, . . . , |d⟩. Since k ≤ d, we can
consider the action of permutations on |1, . . . , k⟩ ∈ (Cd)⊗k:

R(π)|1, . . . , k⟩ = |π(1), . . . , π(k)⟩ . (2.13)

Now, if R(π) and R(σ) would be linearly dependent (π ̸= σ), than so would be the states |π(1), . . . , π(k)⟩
and |σ(1), . . . , σ(k)⟩. However, these are distinct elements from a basis, thus we arrive at a contradic-
tion.

Remark 2.1. In fact, permutations become linearly dependent as soon as k > d. We do not need this statement
in the following, thus we will not treat the proof in the lecture. We however state it here for completeness. We
consider the antisymmetric subspace Altk,d ⊂ (Cd)⊗k which is the joint −1 eigenspace of all transpositions
R((ij)) for (ij) ∈ Sk. The projector onto Altk,d has the general form

PAlt,k,d =
1
k! ∑

π∈Sk

sgn(π)R(π) , (2.14)

where the sign function sgn(π) is given as follows: Decompose π into transpositions only, then count the
number of transpositions needed. If it is even, sgn(π) = 1, else sgn(π) = −1. Now, dim Altk,d = (d

k) = 0
if k > d, and hence PAlt,k,d = 0. This gives a non-trivial linear relation between permutations, i.e. they are
linearly dependent.

2.1.2 Weingarten calculus

By the previous findings, we can always write Mk(A) as a linear combination

Mk(A) = ∑
π∈Sk

cπ(A)Rπ , (2.15)

for some coefficients cπ(A). Note that taking the trace inner product of Mk(A) with a fixed permuta-
tion R†

σ yields

tr(R†
σMk(A)) =

∫
tr(R†

σU⊗k AU⊗k,†)dU =
∫

tr(U⊗k,†R†
σU⊗k A)dU = tr(R†

σ A) . (2.16)

However, we also have

tr(R†
σ A) = tr(R†

σMk(A)) = ∑
π∈Sk

cπ(A) tr(R†
σRπ) =: ∑

π∈Sk

cπ(A)Gσ,π , (2.17)

where we defined the Gram matrix

Gπ,σ := tr(R†
πRσ) = tr(R†

πRσ) = tr(Rπ−1σ) = d#(π−1σ) . (2.18)
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Here, we used that R is a representation to combine the product of permutation operators, and the
trace formula (1.46). Setting aσ := tr(R†

σ A), we can write the above equation in matrix form as
a = Gc, which we could hope to invert to get an expression for the coefficient vector c. Note that
the permutations are not orthogonal with respect to the trace inner product (A |B) = tr(A†B), and
hence the Gram matrix is not simply diagonal. However, we know that the permutations span the
commutant and that Mk(A) lies in the commutant. Hence, the equation a = Gc always has a solution
and it is unique if and only if the permutations form a basis, i.e. iff d ≥ k, which is what will always
assume for the remainder of this course.1 Then, this solution is simply c = G−1a, or put differently,

Mk(A) = ∑
π,σ∈Sk

Wπ,σ tr(R†
σ A)Rπ , (2.19)

where we defined W := G−1, the so-called Weingarten matrix. Knowing the Weingarten matrix allows
us to compute integrals of the form (2.1) using the Weingarten expansion (2.19).

Properties of the Gram and Weingarten matrix The Gram and Weingarten matrix have a substan-
tial structure which directly relates to the representation theory of the symmetric group. We will not
dive into these details in this course, but instead prove some concrete relations. We summarize them
in the following.

Lemma 2.3. The Gram and Weingarten matrix fulfill the following properties.

(a) Gπ,σ and Wπ,σ only depend on π−1σ.

(b) The row and column sums of G are constant:

Gk,d := ∑
σ

Gπ,σ = ∑
π

Gπ,σ =
(d + k − 1)!
(d − 1)!

= d(d + 1) · · · (d + k − 1) . (2.20)

(c) The row and column sums of W are constant:

∑
σ

Wπ,σ = ∑
π

Wπ,σ = G−1
k,d =

(d − 1)!
(d + k − 1)!

. (2.21)

Proof. (a) Clearly, Gπ,σ depends only on π−1σ by definition (cf. Eq. (2.18)). Now note that this implies
that G is invariant under simultaneous row and column permutations. Indeed, if Tτ is the permu-
tation matrix acting as Tτ|eπ⟩ = |eτπ⟩, then (T−1

τ GTτ)σ,π = Gτσ,τπ = Gσ,τ. Inverting G = T−1
τ GTτ

yields W = T−1
τ WTτ and thus Wπ,σ = Wτπ,τσ for all τ, in particular Wπ,σ = Wid,π−1σ for τ = π−1. For

(b), we compute

Gk,d = ∑
σ

tr(Rπ−1σ) = ∑
σ

tr(Rσ) = k! tr(PSym,k,d) = k!
(

d + k − 1
k

)
=

(d + k − 1)!
(d − 1)!

. (2.22)

Here, we used that the multiplication by π−1 can be absorbed into the sum (variable change), and
the definition of the projector onto the symmetric subspace, PSym,k,d = 1

k! ∑σ Rσ, and the value of its
trace, cf. Eqs. (1.54) and (1.59). For (c), we note that the definition of W as inverse of G implies

∑
π

Wσ,πGπ,τ = δσ,τ ⇒ 1 = ∑
π,τ

Wσ,πGπ,τ = Gk,d ∑
π

Wσ,π ⇒ ∑
π

Wσ,π = G−1
k,d . (2.23)

1It is however not terribly complicated to make this work for d < k, see Sec. 2.3.
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Some examples and exercises In the following, we will compute the Weingarten matrix for small
values of k and illustrate the computations of Haar integrals using a number of examples. To this
end, we use that the Gram matrix has a very simple form: It is the trace of a permutation Rτ = R†

πRσ

and we gave an expression for this in Eq. (1.46).

Example 2.2: Weingarten matrix for k = 2

Let us consider k = 2. Then we only have two permutations: the identity 1 and the
flip/swap F = (2 1). There is only one non-trivial matrix element, namely G1,F = tr(F) =
d. Hence, the Gram and Weingarten matrices are

G = d2
(

1 d−1

d−1 1

)
, W =

1
d2 − 1

(
1 −d−1

−d−1 1

)
. (2.24)

Example 2.3: Average collision probability

The probability of obtaining the computational basis state x on U|0⟩ is p(x|U) =
|⟨x |U |0⟩|2. A measure of flatness of this distribution is the collision probability:

ZU := ∑
x

p(x|U)2 = ∑
x
|⟨x |U |0⟩|4 . (2.25)

Here, we are interested on how flat this distribution is on average, over Haar-random
unitaries U. Due to the invariance of the Haar measure, we can simply absorb the X gates
that prepare |x⟩ = Xx1 ⊗ · · · ⊗ Xxn |0⟩ =: X(x)|0⟩ into the average:

Z :=
∫

ZUdU = ∑
x

∫
U
|⟨0 |X(x)U |0⟩|4dU = d

∫
U
|⟨0 |U |0⟩|4dU . (2.26)

To compute the integral, we use second-order Weingarten calculus:

Z = d
∫

U
tr(|0⟩⟨0|⊗2U⊗2|0⟩⟨0|⊗2U⊗2,†)dU (2.27)

= d ∑
π,σ∈S2

Wπ,σ tr(R†
σ|0⟩⟨0|⊗2) tr(Rπ|0⟩⟨0|⊗2) (2.28)

= d ∑
π,σ∈S2

Wπ,σ (2.29)

= 2dG−1
2,d = 2d

(d − 1)!
(d + 1)!

=
2

d + 1
. (2.30)

Here, we used Lem. 2.3. Note that we haven’t actually used the exact form of the Wein-
garten matrix from Ex. 2.2. In fact, along the same lines we find that the average of
∑x p(x|U)k is

Ik := ∑
x

∫
p(x|U)kdU = k!dG−1

k,d =
k!d!

(d + k − 1)!
. (2.31)

Exercise 2.1. Using Weingarten calculus, compute the operator S := d
∫
(U|0⟩⟨0|U†)⊗2dU .

2.2 Approximating the Haar measure: Unitary designs

In this chapter, we have seen how Haar integrals over the unitary group can be computed using
Weingarten calculus. These tools will help us to design randomized protocols and algorithms for
applications, and we will see an example for that already in the next chapter. In practice, Haar-
random unitaries are however way too expensive to be useful: On a system with n qudits, a quantum
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Figure 2.1: Caricature showing a “series expansion” of the Haar measure on the full unitary group
(here depicted by a sphere) into finite subsets that agree with the k-th Haar moment. Taken from
Kueng and Gross [1].

circuit implementing a Haar-random unitary requires a circuit depth that is exponential in n. This
means that any quantum algorithm that utilizes Haar-random unitaries necessarily has exponential
runtime.

In this section, we thus briefly discuss a concept introduced to lower the requirements for quan-
tum randomness: unitary k-designs. These are sets of unitaries that mimic the Haar measure up to the
k-th moment and can thus be used as a replacement in applications that rely on finite moments only.
Importantly, unitary designs may be constructed using significantly less resources than Haar-random
unitaries, in particular using polynomial-sized circuits.

2.2.1 Unitary designs

Formally, we define a unitary design as follows. Let G ⊂ U(d) be a (finite) set of unitaries (we can
extend this to infinite sets equipped with a suitable probability measure). Then, we call G a unitary
k-design if

1
|G| ∑

U∈G
U⊗k AU⊗k,† = Mk(A) , (2.32)

for all matrices A. We call the largest k for which Eq. (2.32) holds the order of the unitary design.
Unitary designs can be seen as a set of points in the unitary group that are “sufficiently equally
distributed” to reproduce the first moments of the Haar measure, cf. Fig. 2.1.

Note that the left hand side of Eq. (2.32) can be seen as the k-fold twirl over the set G. This
means that averages over the set G can be computed using averages over the full unitary group
– for instance using Weingarten calculus. Vice versa, in applications that only depend on k-fold
twirls, Haar-random unitaries can be replaced by unitary k-designs, thereby enabling more resource-
efficient and flexible implementations.

One might hope that one could find sufficiently symmetric subgroups of U(d) that gives natural
candidates for unitary designs. However, it turns out that Eq. (2.32) together with the group structure
imposes very strict conditions on such a subgroup, resulting in the fact these do no exist for k ≥ 4
(and d ≥ 5). Despite this, the most important example of a unitary design (with k = 3) is in fact a
group, the Clifford group, which we will introduce in the next section.

Nevertheless, unitary k-designs exist for all k and dimensions d. Unfortunately, explicit construc-
tions of general unitary k-designs are incredibly rare and the known ones are highly inefficient. To
overcome these obstacles, it has been fruitful to demand that Eq. (2.32) holds only approximately
– such approximate unitary designs can be realized much more easily and enable the efficient imple-
mentation of quantum randomness also for higher moments k. We will come back to this point in
Ch. 4.

2.2.2 The Clifford group

The prototypical example of a unitary design is the Clifford group. Besides designs, the Clifford group
plays a major role in quantum error correction, where it typically constitutes the set of “easy” gates in
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fault-tolerant quantum computing. Clifford operations can also be efficiently simulated on a classical
computer, making them the starting point for classical simulation algorithms and investigations of
the “non-classicality” of quantum mechanics.

The simplest way to define the Clifford group is via its local generators: The single-qubit phase
gate S and Hadamard gate H, as well as the two-qubit CNOT gate CX, given by

S|x⟩ = ix|x⟩ H|x⟩ = 1√
2

(
|0⟩+ (−1)x|1⟩

)
CX|x, y⟩ = |x, y ⊕ x⟩ , (2.33)

where y ⊕ x denotes addition modulo 2. The group that is generated by S and H on every qubit and
CX on every pair of qubits is the n-qubit Clifford group Cln. It is a finite subgroup of U(2n) with 2O(n2)

elements. Importantly, every Clifford unitary can be implemented using O(n2) generators S, H, and
CX.

An important subgroup of the Clifford group is the Pauli group. Recall the Pauli operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (2.34)

which we complement with the identity 1. Then, the multi-qubit Pauli operators on H = (C2)⊗n are
simply given by all possible tensor products of the single-qubit Pauli operators, in formula:

σ = σ1 ⊗ · · · ⊗ σn , σi ∈ {1, X, Y, Z} . (2.35)

The n-qubit Pauli operators form a group up to phases, the so-called n-qubit Pauli group:

Pn := {itσ1 ⊗ · · · ⊗ σn | t ∈ Z4, σi ∈ {1, X, Y, Z}} . (2.36)

To see that Pn forms a subgroup of Cln, note that Z = S2, HZH = X, and Y = iXZ. It turns out
that we can characterize the Clifford group uniquely through the Pauli group: Clifford unitaries are
exactly those unitaries that conjugate Paulis into Paulis, up to a phase.2 In formula, we thus have

Cln. U(1) =
{

U ∈ U(2n) | UPnU† = Pn
}

. (2.37)

Note that we had to add arbitrary global phases (U(1)) to Cln as these are present on the right hand
side as well.

The qudit case. The definition of the Clifford group can be readily extended to higher-dimensional
qudits of dimension q. We will here focus on the case that q > 2 is prime, as this will matter for the
design properties of the Clifford group.

We start by generalizing the generators of the qubit Clifford group. To this end, let ωq := e2πi/q

be a primitive q-th root of unity, and let 2−1 be the inverse of 2 modulo q. Define

Hq|x⟩ :=
1
√

q

q−1

∑
y=0

ω
xy
q |y⟩ Sq|x⟩ := ω

2−1x(x−1)
q |x⟩ CXq|x, y⟩ := |x, y ⊕ x⟩ , (2.38)

where y ⊕ x denotes addition modulo q. Then, we again define the n-qudit Clifford group Cln(q) to
be the group generated by Hq, Sq on every qudit and CXq on every pair of qudits. This is again a
finite subgroup of U(qn) of order qO(n2).

Equivalently, we can define Cln(q) in terms of a qudit version of Pauli operators, defined by

Zq|x⟩ := ωx
q |x⟩ , Xq|x⟩ := |x ⊕ 1⟩ , Yq := ω2−1

q X†
q Z†

q . (2.39)

The qudit Pauli group is then given as

Pn(q) := {ωt0
q σt1

1 ⊗ · · · ⊗ σtn
n | ti ∈ Zq, σi ∈ {Xq, Yq, Zq}} . (2.40)

As in the qubit case, qudit Clifford unitaries map qudit Paulis to qudit Paulis, up to a phase.
2In group-theoretic terms, the Pauli group is a normal subgroup of the Clifford group, and the Clifford group is the

normalizer of the Pauli group within the unitary group.
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The Clifford group as a design. Finally, we have the following result on the design properties of
the Clifford group.

Theorem 2.2. Let q be prime. Then, the Clifford group Cln(q) is a unitary 2-design but not a 3-design if q is
odd, and a unitary 3-design but not a 4-design if q = 2.

We will not prove this theorem here. It is not particularly difficult (see e.g. Ref. [2, Sec. 12.2] for a
summary), but it requires a slightly deeper analysis of the structure of the Clifford group which shall
not be the focus of this course.

2.3 Further reading

To be done.



CHAPTER 3

MEASURING PROPERTIES OF MANY-BODY STATES USING CLASSICAL SHADOWS

Quantum experiments are getting better and better in coherently manipulating many-body quantum
systems. We can use this to study interesting many-body phenomena by preparing exotic and weird
quantum states. In quantum computers, a high level of control is necessary to manipulate quantum
information and perform quantum computations.

However, even with perfect quantum control, we are left with the problem of extracting infor-
mation from the prepared quantum states. An example for this would be the expectation value of
a given Hamiltonian, because we are trying to find its ground state through a variational quantum
algorithm. We could also be interested in more complicated properties, such as the entanglement of
the state across some bipartition to verify or reject area laws.

In this chapter, we consider the problem of experimentally estimating an expectation value of the
form tr(Oρ), where ρ is the quantum state that is experimentally accessible and O is the observable
of interest. Importantly, we do not assume that O can be measured directly. In the following, we
will show that for some interesting classes of observables this problem can be solved using classical
shadows. The main idea is to randomize measurement bases using a suitable ensemble of random
unitaries, resulting in a partial classical representation of the quantum state (the “shadow”). The
shadow can then be used be a classical computer to predict expectation values. Intriguingly, the
same classical shadow can be used to predict expectation values of many observables at once, at a
moderate (logarithmic) overhead in the size of the shadow (i.e. the number of measurements).

We will first review some basics on quantum measurements and the (partial) reconstruction of
quantum states from measurement data. Afterwards, we introduce the idea of classical shadows and
treat most common instances of the protocol based on Clifford unitaries. We will also hint briefly at
other usecases discussed in the literature.

3.1 Reconstructing quantum states from measurements

Suppose we have access to many copies of a quantum state ρ and we want to obtain a classical de-
scription of ρ from measurement statistics, e.g., in the form of a density matrix. This reconstruction
task is also called quantum state tomography. The central question is how should we choose our mea-
surements such that this reconstruction succeeds (for any state), and how many measurement do we
need in total?

Let us consider quantum measurements in a basis |φ1⟩, . . . , |φd⟩ of the Hilbert space H. The
probability distribution over outcomes of this measurement follows Born’s rule:

Born’s rule: p(i|ρ) := ⟨φi |ρ |φi⟩ = tr(Eiρ) where Ei := |φi ⟩⟨φi| . (3.1)

Clearly, measuring in a basis cannot be enough for state reconstruction because we can only assess
the diagonal elements of ρ in the chosen basis. Hence, we are insensitive to any coherence in the
basis: For instance, we cannot distinguish between any two states of the form |0⟩+ eiα|1⟩ by looking
at the diagonal elements of their density matrices only.

However, it turns out that if we combine measurements in sufficiently many bases, state recon-
struction is possible and we will explicitly describe such a reconstruction algorithm in a moment.
Before, we introduce some new notation that will simplify both the following computations as well
as those in the upcoming chapters.

Operator bra-ket notation. Recall that the vector space L(H) of linear operators on H is equipped
with the trace inner product:

(A |B) := tr(A†B) . (3.2)

22
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With this notation, we can now express Born probabilities as

p(i|ρ) = (Ei |ρ) , (3.3)

with the interpretation of projecting the state ρ onto the pure state Ei = |φi ⟩⟨φi|. Furthermore,
analogous to the ordinary bra-ket notation based on the inner product ⟨·| ·⟩ on H, we now introduce
operator bra-ket notation by defining operator kets and operator bras as

|B) := B , (A| : B ≡ |B) 7→ (A |B) . (3.4)

Note that operator bras (A| are linear forms on L(H) (dual vectors), just as ordinary bras ⟨ψ| are
dual vectors on H. Again similar to the ordinary bra-ket notation, we introduce operator bra-kets as
the outer products

|A)(B| : C ≡ |C) 7→ |A)(B |C) , (3.5)

As we will see in a moment, this gives us a convenient way to write down linear maps on operators,
similar to expressions of the form A = ∑i,j Ai,j|i⟩⟨ j| for the ordinary bra-ket notation. For instance,
the Weingarten expansion (2.19) attains the following appealing form in this notation:

Mk = ∑
π,σ∈Sk

Wπ,σ|Rπ )(Rσ| , (3.6)

Following the quantum information language, we will refer to linear maps on operators, such as (3.5),
as superoperators (as these are “operators on operators”). An important example of superoperators are
quantum channels.

Reconstruction via linear inversion. Equipped with the new notation, let us come back to the
reconstruction of quantum states from measurements. Consider the following superoperator:

S :=
d

∑
i=1

|Ei )(Ei| . (3.7)

We call S the frame (super)operator associated to the basis (φi)i∈[d]. In the classical shadows literature
S is also called the measurement channel. Note that we have S(ρ) = ∑d

i=1 p(i|ρ)Ei for any state ρ
and in this sense, the inability of reconstructing a state from a basis measurement is encoded in the
non-injectivity of S.

However, it turns out that if we combine measurements in sufficiently many bases, we can per-
form successful state reconstruction. Suppose we are given bases (φi,j)i∈[d] for j = 1, . . . , m and we
perform measurements in any of those. The frame operator of this combined measurement strategy
is a convex combination of the single frame operators:

S =
1
m

m

∑
j=1

Sj =
1
m

m

∑
j=1

d

∑
i=1

|Ei,j )(Ei,j| . (3.8)

Suppose that this combined frame operator S is invertible, which is –as it turns out– necessary for
reconstruction (cf. Ex. 3.1). Then, we can do the simply manipulation

ρ = S−1S(ρ) =
1
m

m

∑
j=1

d

∑
i=1

S−1|Ei,j)(Ei,j |ρ) =
1
m

m

∑
j=1

d

∑
i=1

p(i, j|ρ)Ẽi,j , (3.9)

where p(i, j|ρ) = (Ei,j |ρ) are again the Born probabilities and Ẽi,j := S−1(Ei,j) are the dual measure-
ment elements. This gives as a simply recipe to reconstruct the state ρ from the Born probabilities
p(i, j|ρ) obtained through measurements, which is typically called linear inversion tomography.

As it is generally the case for quantum state tomography, we need a lot of copies of ρ, i.e. mea-
surements, to approximate ρ through the formula (3.9), namely at least dr2ε−2 many, where d is the
Hilbert space dimension, r = rank(ρ), and ε is the desired precision in trace distance. This means
that the measurement effort of quantum state tomography scales exponentially with the number of
qudits in the system and is thus limited to small systems only.
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Exercise 3.1 (Informationally complete measurements). In general, state reconstruction can only be suc-
cessful if the Born probabilities differ for any two states ρ ̸= ρ′. If this is the case, we call the measurement
informationally complete (IC).

(a) Show that measurements in several bases is informationally complete if and only any operator X ∈ Cd×d

can be written as a linear combination of the Ei,j, this is X = ∑i,j xi,jEi,j (i.e. the Ei,j span the space of
operators). Hint: Consider the linear map V(x) := ∑i,j xi,jEi,j from Cd×m to L(H) and its adjoint V†

(bra-ket notation might be useful).

(b) Show that measurements in several bases is informationally complete if and only if the frame operator
(3.7) is invertible. Hint: Show that S = 1

m VV† where V is the map from (b).

Exercise 3.2. For those interested in quantum information: Show that the frame operator (3.7) is indeed a
quantum channel by computing its Choi matrix.

3.2 Shadow estimation with randomized measurements

In the previous section, we have seen that quantum state tomography can be realized based on simple
linear inversion, but it requires exponentially many measurements rendering it very inefficient. But
what if we are not interested in reconstructing the full state ρ, but only some of its features? Concretely,
let us say that we want to reconstruct M linear functions of ρ, which we can write as (Os |ρ) (s =
1, . . . , M). We call this task shadow tomography as we do not observe the full state, but only some of
features, similar to the shadow of an object that is illuminated from a certain direction, cf. Fig. 3.1.
Can shadow tomography be done more efficiently than performing full quantum state tomography?

The answer is yes, but it depends, namely on the allowed measurement strategy (can we access
only single copies of ρ, or some of them at once) and also on the observables Os. In the following, we
will focus on single-copy measurements and show how randomized measurements can be used to
estimate some classes of expectation values very efficiently.

Figure 3.1: Shadow tomography is the task
of determining only some of the features of a
quantum state without performing full quan-
tum state tomography. We do this by con-
sidering only few measurements of the state
akin to the shadows of an object under few
illumination angles as shown in this cartoon.
Figure taken from the popular summary of
Ref. [3].

We thus study measurements in random rotations of the computational basis, i.e. measurements
are performed in the bases

|U, x⟩ := U†|x⟩ , EU,x := |U, x⟩⟨U, x| = U†|x⟩⟨x|U , x ∈ [d] , (3.10)

where the unitary U is sampled uniformly at random from a finite set G ⊂ U(d) (here the adjoint
comes from using the Heisenberg picture). The frame operator is then a probabilistic mixture of the
frame operators in the rotated bases (3.10):

S =
1
|G| ∑

U∈G

d

∑
x=1

|EU,x )(EU,x| . (3.11)

The underlying observation is that we can use the linear inversion trick (3.9) to obtain the following
identity for expectation values:

(O |ρ) = (O |S−1S |ρ) = 1
|G| ∑

U∈G

d

∑
x=1

(O |S−1 |EU,x)(EU,x |ρ) = ∑
U∈G

d

∑
x=1

(O | ẼU,x)p(x|U, ρ)p(U) , (3.12)
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where we set p(x|U, ρ) = (EU,x |ρ) and p(U) = 1/|G|. We chose the later notation to highlight
that we are sampling pairs (U, x) according to the joint distribution p(x|U, ρ)p(U). This suggests to
estimate the expectation value (O |ρ) using the following protocol.

Protocol 3.1: Shadow estimation

Repeat the following steps N times:

(i) Sample a unitary U uniformly at random from the set G and apply it to ρ

(ii) Measure in the computational basis resulting in outcome x

(iii) Record the pair (U, x)

Estimate (O |ρ) using the mean estimator of ôU,x := (O | ẼU,x) on the N samples.

Equation (3.12) then guarantees that shadow estimation 3.1 converges in expectation to (O |ρ)
(i.e. ô is an unbiased estimator). But how fast does this estimator converge, i.e. how many measure-
ments N do we have to perform? As we will see below, this depends a lot on the used ensemble G
and on the observable O (as well as on the state).

To answer the question on sample complexity, as well as other questions on the efficiency and
practicability of the shadow estimation protocol 3.1, we have to analyze it in more depth. As a first
step we will compute the frame operator (3.7) and its inverse, as it is needed in the construction
of the estimator ôU,x = (O |S−1 |EU,x). The frame operator involves two invocations of U and U†,
respectively, which we can explicitly see by considering the matrix elements

(A |S |B) =
d

∑
x=1

1
|G| ∑

U∈G
(A |EU,x)(EU,x |B) =

d

∑
x=1

1
|G| ∑

U∈G
tr(A† ⊗ B U⊗2|x⟩⟨x|⊗2U⊗2,†) (3.13)

Hence, if we take G to be a unitary 2-design, we can replace the average over G in Eq. (3.13) by an
average over the unitary group, computable via Weingarten calculus. In the following, we will see
that this brings S into a very simple form.

3.2.1 Clifford measurements

Computing the shadow estimator. Let us thus assume that we are randomizing over a unitary
2-design, or equivalently, over Haar-random unitaries, and compute the frame operator by k = 2
Weingarten calculus. To this end, we evaluate the integral (cf. Example 2.3):

(A |S |B) =
d

∑
x=1

∫
U(d)

tr(A† ⊗ B U⊗2|x⟩⟨x|⊗2U⊗2,†)dU (3.14)

=
d

∑
x=1

∑
π,σ∈S2

Wπ,σ tr(R†
σ A† ⊗ B) tr(Rπ|x⟩⟨x|⊗2) (3.15)

= d ∑
π,σ∈S2

Wπ,σ tr(R†
σ A† ⊗ B) (3.16)

= d
(d − 1)!
(d + 1)! ∑

σ∈S2

tr(R†
σ A† ⊗ B) (3.17)

=
1

d + 1

(
tr(A†) tr(B) + tr(A†B)

)
. (3.18)
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In the last step, we used that tr(R(12)A† ⊗ B) = tr(A†B) which can be easily verified using the graph-
ical notation (cf. Exercise Sheet 2). Next, we note that

1
d + 1

(
tr(A†) tr(B) + tr(A†B)

)
=

1
d + 1

(
(A |1)(1|B) + (A |id|B)

)
(3.19)

=
1

d + 1

(
d(A |D|B) + (A |id|B)

)
, (3.20)

where D = 1
d |1)(1| is the completely depolarizing channel, acting as D(X) = tr(X)1/d. Hence, we

have shown that
S =

1
d + 1

(
dD + id

)
≡ D d

d+1
, (3.21)

is a convex combination of the completely depolarizing channel and the identity, and thus a depolar-
izing channel of strength d/(d + 1). Moreover, as both channels are trace-preserving (TP), so is S. It
is then staightforward to invert S:

Y = S(X) =
tr(X)1+ X

d + 1
⇒ X = (d + 1)Y − tr(Y)1 ⇒ S−1 = (d + 1)id − dD , (3.22)

where we used that S is TP and thus tr X = tr S(X) = tr Y.
Using the explicit form of S−1, we can write the shadow estimator ô as follows

ôU,x = (O |S−1 |EU,x) = (d + 1)(O |EU,x)− tr(O) = (d + 1) tr(OU†|x⟩⟨x|U)− tr(O) . (3.23)

Thus, the evaluation of ôU,x requires us to classically compute the expectation value of O in the
rotated basis states U†|x⟩. We will comment on the efficiency of this computation later.

Number of measurements. A central question remains: How efficient is shadow estimation in terms of
the required number of measurements (sample complexity)? This requires us to bound the convergence
of the mean estimator associated to ô for which we will use Chebyshev’s inequality.

Lemma 3.1 (Chebyshev’s inequality). Let X be a random variable and ε > 0. Then, we have

Pr[|X − E[X]| > ε] ≤ Var[X]

ε2 . (3.24)

In particular, if X1, . . . , XN are independent and identically distributed (iid) random variables with mean µ
and variance σ2, and X := 1

N ∑N
i=1 Xi, then

Pr[|X − µ| > ε] ≤ σ2

Nε2 . (3.25)

Chebyshev’s inequality implies that we need N ≥ ε−2δ−1 Var[ô] many samples to get an ε-
approximate estimate of tr(Oρ) with probability at least 1 − δ. Hence, we need the variance of ô
to be sufficiently small to get a decent bound on the sample complexity.

Before we compute Var[ô], we note that

Var[ô] = E[(ô − E[ô])2] . (3.26)

but ô − E[ô] only depends on the traceless part of O, i.e. O0 = O − tr(O)1/d, since

ôU,x − E[ô] = (d + 1) tr(OU†|x⟩⟨x|U)− tr(O)− tr(Oρ) (3.27)

= (d + 1) tr(O0U†|x⟩⟨x|U)− tr(O0ρ) + tr(O)

(
d + 1

d
− 1 − 1

d

)
(3.28)

= (d + 1) tr(O0U†|x⟩⟨x|U)− tr(O0ρ) . (3.29)
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Thus, we can use the traceless observable O0 instead of O in the future computations. Next, we use
Var[ô] = E[ô2]− E[ô]2 and focus on the computation of E[ô2].

Using the explicit form (3.23) of ô, we then compute

E[ô2
0] = ∑

U∈G

d

∑
x=1

(O0 | ẼU,x)
2 p(x|U, ρ)p(U) (3.30)

=
1
|G| ∑

U∈G

d

∑
x=1

(O0 |EU,x)
2(EU,x |ρ) (3.31)

=
(d + 1)2

|G| ∑
U∈G

d

∑
x=1

(O⊗2
0 ⊗ ρ |E⊗3

U,x) (3.32)

=
(d + 1)2

|G| ∑
U∈G

d

∑
x=1

tr
(

O⊗2
0 ⊗ ρ U⊗3|x⟩⟨x|⊗3U⊗3,†

)
. (3.33)

To compute the latter twirl, we now assume that G is a unitary 3-design such that we can apply
Weingarten calculus. We then find, analogous to the computation of the frame operator (cf. Lem. 2.3):

E[ô2
0] = (d + 1)2

d

∑
x=1

∑
π,σ∈S3

Wπ,σ tr
(
O⊗2

0 ⊗ ρ Rπ

)
tr(R†

σ|x⟩⟨x|⊗3) (3.34)

= d(d + 1)2 (d − 1)!
(d + 2)! ∑

π∈S3

tr
(
O⊗2

0 ⊗ ρ Rπ

)
(3.35)

=
d + 1
d + 2

tr

( O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

+

O0

O0

ρ

)
(3.36)

=
d + 1
d + 2

(
tr(O2

0) + 2 tr(O2
0ρ)
)

, (3.37)

where we used that O0 is traceless and thus the first, third, and fourth term in Eq. (3.36) vanishes. We
thus get the following bound on the variance for a unitary 3-design:

Var[ô] ≤ E[ô2
0] =

d + 1
d + 2

(
tr(O2

0) + 2 tr(O2
0ρ)
)
≤ d + 1

d + 2
(
∥O0∥2

2 + 2∥O0∥2
∞
)
≤ 3∥O0∥2

2 . (3.38)

Here, ∥X∥2
2 = (X |X) = tr(X†X) is the Hilbert-Schmidt norm and ∥X∥∞ = supψ∥X|ψ⟩∥ is the spectral

or operator norm. In the last step, we used Hölder’s inequality, tr(O2
0ρ) ≤ ∥O0∥2

∞ tr ρ, as well as the
general inequality ∥X∥∞ ≤ ∥X∥2.

Discussion of shadow estimation with Clifford unitaries. In the previous derivations we assumed
that G forms a unitary 3-design and for concreteness we will take G = Cln to be the n-qubit Clifford
group.1 Based on the variance (3.38), we can see that shadow estimation with Clifford unitaries is
sample-efficient for observables O with bounded Hilbert-Schmidt norm, ∥O0∥2 ≤ ∥O∥2 ≤ const.
(in the sense that the number of measurements N does only depend on the precision, not on the
number of qubits). The most important example of such observables are quantum states for which
∥σ∥2 =

√
tr(σ2) ≤ 1. The associated expectation values then have the form tr(ρσ) = (ρ |σ) and can

be interpreted as overlaps between the states. Moreover, if σ = |ψ⟩⟨ψ|, then tr(ρσ) = ⟨ψ |ρ |ψ⟩ ≡ F(ρ, σ)
coincides with the usual definition of fidelity between two quantum states (for mixed states, the
formula is a bit more complicated). Hence, we can use shadow estimation with Clifford unitaries to
efficiently perform fidelity estimation with pure target states.

While shadow estimation is sample-efficient, the classical post-processing of the measurement data
requires the evaluation of ôU,x using Eq. (3.23). This typically involves the classical simulation of the

1See Sec. 3.3 for the qudit case.
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unitary evolution of |x⟩ under U†. For the considered Clifford unitaries, it turns out that U†|x⟩ can be
efficiently computed on a classical computer (in time O(n2)) and has an efficient classical description
(O(n2) bits) that can be stored (Gottesman-Knill theorem).

However, the evaluation of ôU,x also involves taking the inner product with O which is, in general,
inefficient, i.e. we have to expect that this scales exponentially with the number of qubits n if O does
not possess a special structure that we can exploit.

But how does this compare to other methods of fidelity estimation? The direct fidelity estimation
protocol achieves the same task, but requires a number of measurements that depend on the target
state |ψ⟩ and typically scale exponentially in the number of qubits n, while the demands on the clas-
sical computer are negligible. In this sense, shadows move the complexity of fidelity estimation from
measurements to the classical post-processing, which may be advantageous in near-term devices
where taking measurements is more costly than running computations on a powerful computer. For
a detailed comparison of fidelity estimation based on classical shadows and direct fidelity estimation,
see also Leone, Oliviero, and Hamma [4].

Classical post-processing with Clifford unitaries for stabilizer state fidelity estimation Fidelity
estimation is sample efficient, but the classical post-processing requires the evaluation of

ôU,x = (d + 1)⟨ϕ|U†|x⟩|2 − 1. (3.39)

This is efficiently implementable with Clifford gates.
First, we note that all the states |x⟩ in the computational basis are +1 eigenstates of N independent

and commuting observables (−1)xi Zi where Zi = I⊗i−1 ⊗ Z ⊗ I⊗n−i, namely (−1)xi Zi|x⟩ = |x⟩.
Recall by definition the Clifford group maps individual Pauli strings into individual Pauli strings.
This means that |ψ⟩ = U|x⟩ for some |x⟩ in the computational basis and U ∈ ClN Clifford unitary
fulfills

|ψ⟩ = U|x⟩ = U(−1)xi Zi|x⟩ = U(−1)xi ZiU†U|x⟩ = Z̃i|ψ⟩. (3.40)

Thus, the state |ψ⟩ also is the +1 eigenstate of new N independent and commuting Pauli strings
Z̃i ≡ U(−1)xi ZiU†. State fulfilling this property are denoted stabilizer states and their associated
Z̃i the stabilizers. An equivalent characterization is that stabilizer states are given by the action of
a random Clifford unitary on a computational basis state. The knowledge of these Pauli strings is
sufficient to fix the knowledge of the state. Indeed, as a density matrix

|ψ⟩⟨ψ| =
N

∏
i=1

(
I + Z̃i

2

)
=

1
2N ∑

P∈S(ψ)
P , (3.41)

where S(ψ) = span(Z̃1, . . . , Z̃N) is the so-called stabilizer group of |ψ⟩. (It is easy to see that
Z̃iZ̃j|ψ⟩ = |ψ⟩ and that [Z̃i, Z̃j] = 0).

Every Pauli string can be univoquely determined by

P = (i)ϕ(Xa1 Zb1)⊗ (Xa2 Zb2)⊗ · · · ⊗ (XaN ZbN ) , (3.42)

where aj, bj ∈ Z2 and ϕ ∈ {0, 1, 2, 3}.

Predicting many expectation values at once. We note that the above estimation strategy can also
be extended to estimate several expectation values (O1 |ρ), . . . , (OM |ρ) at once. To make this precise,
note that for the simultaneous estimation of all expectation values we have to choose the failure
probability for the i-th mean estimator to be δ/M such that the joint failure probability is uniformly
bounded by δ (union bound). Hence, we need the following number of measurements in total:

N ≥ M
ε2δ

max
i=1,...,M

Var[ôi] , (mean estimators) , (3.43)
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Depending on the size of M, it may be beneficial to replace the mean estimator for each observable
by a so-called median-of-means estimator. The idea behind the median-of-means estimator is that the
data set is decomposed into K equally sized batches of size N′ for any of which an independent
mean estimator ô(j)

i (N′) is computed. Finally, we take the median over all these mean estimators, in
formula

ôi(N′, K) = median
{

ô(1)i (N′), . . . , ô(K)i (N′)
}

. (3.44)

The advantage of this approach is that it is more robust against deviations from the mean. Indeed,
a statistical analysis of the median-of-means estimator shows that the dependency on the failure
probability of estimating all M expectation values is improved from M/δ to log(M/δ) at the cost of
larger constants. More precisely, we obtain the following bound on the number of samples

N ≥ 68
ε2 log

(
2M

δ

)
max

i=1,...,M
Var[ôi] , (median-of-means estimators) , (3.45)

with batch size K = 2 log(2M/δ), to guarantee an ε-approximate estimation of all M expectation
values with probability at least 1 − δ.

Finally, we note that for the median-of-means estimator to be beneficial, we need 68 log(2M/δ) ≤
M/δ which is true for M/δ ≥ 464.76. Assuming δ = 0.01 (1% failure probability), we thus obtain
M ≥ 5.

3.2.2 Pauli measurements

In the following, we consider the ensemble given by local Clifford unitaries, these are unitaries of
the form U = U1 ⊗ · · · ⊗ Un where Ui ∈ Cl1 are single-qubit Clifford unitaries. We denote this
set by LCln := Cl⊗n

1 . The effect of local Clifford unitaries is to locally change the basis: Instead of
measuring each qubit in the Z basis, each qubit is measured in either the X, Y, or Z basis, depending
on the Clifford unitary Ui. This is why these are also referred to as Pauli measurements. The hope
in this choice of ensemble is that it may be better adjusted to measuring local observables of the form
O = O1 ⊗ · · · ⊗ Or ⊗ 1

⊗(n−r) which only act non-trivially on r qubits.

Computing the shadow estimator. Because all of the expressions factorize, we can re-use our com-
putations from Sec. 3.2.1. For instance,

EU,x = (U†
1 ⊗ · · · ⊗ U†

n)|x1, . . . , xn ⟩⟨x1, . . . , xn|(U1 ⊗ · · · ⊗ Un)
n⊗

i=1

U†
i |xi ⟩⟨xi|Ui =

n⊗
i=1

EUi ,xi . (3.46)

Hence, the frame operator becomes

S =
1

|Cl1|n ∑
U1,...,Un∈Cl1

∑
x∈{0,1}n

n⊗
i=1

|EUi ,xi )(EUi ,xi | = S⊗n
1 , (3.47)

where S1 is the local frame operator for which we can use Eq. (3.21) with d = 2:

S1 =
1

|Cl1| ∑
U∈Cl1

∑
x∈{0,1}

|EU,x )(EU,x| =
1
3
(2D + id) . (3.48)



CHAPTER 3. MEASURING PROPERTIES USING CLASSICAL SHADOWS 30

In particular, S−1 = (3id − 2D)⊗n by Eq. (3.22). For our r-local observable O = O1 ⊗ · · · ⊗ Or ⊗
1
⊗(n−r) we can then use that each factor (3id − 2D) preserves trace such that

ôU,x = (O |S−1 |EU,x) (3.49)

=
r

∏
i=1

(Oi |3id − 2D|EUi ,xi)
n

∏
i=r+1

(1|EUi ,xi) (3.50)

=
r

∏
i=1

ôi,Ui ,xi (3.51)

=
r

∏
i=1

(
3 tr(OiU†

i |xi ⟩⟨xi|Ui)− tr(Oi)
)

. (3.52)

Number of measurements. Next, we compute the variance of ô. Because the estimator only de-
pends on the first r qubits we can resum the remaining local terms inside the Born probability using
that 1

|Cl1| ∑V∈Cl1 ∑y∈{0,1} V†|y⟩⟨y|V = 1

E[ô2] =
1

|Cl1|n ∑
U∈Cln

1

∑
x∈{0,1}n

r

∏
i=1

ô2
i,Ui ,xi

tr
( n⊗

i=1

U†
i |xi ⟩⟨xi|Uiρ

)
(3.53)

=
1

|Cl1|r ∑
U∈Clr1

∑
x∈{0,1}r

r

∏
i=1

ô2
i,Ui ,xi

tr
( r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ⊗ 1

⊗(n−r)ρ

)
(3.54)

=
1

|Cl1|r ∑
U∈Clr1

∑
x∈{0,1}r

r

∏
i=1

ô2
i,Ui ,xi

tr
( r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ρ′

)
, (3.55)

where ρ′ = trr+1,...,n ρ is the reduced state on the first r qubits.
In the following, we concentrate on the case that O = σ1 ⊗ · · · ⊗ σr ⊗ 1

⊗(n−r) is a Pauli operator
supported on r qubits (here σi ∈ {X, Y, Z}) and refer to Ref. [5] for general r-local observables. Using
the explicit form of the shadow estimator (3.52), we can then compute in analogy to Sec. 3.2.1:

E[ô2] =
1

|Cl1|r ∑
U∈Cln

1

∑
x∈{0,1}r

r

∏
i=1

9 tr(σiU†
i |xi ⟩⟨xi|Ui)

2 tr

(
r⊗

i=1

U†
i |xi ⟩⟨xi|Ui ρ′

)
(3.56)

= tr

[
1
⊗2
r ⊗ ρ′

r⊗
i=1

(
9

|Cl1| ∑
U∈Cl1

∑
x∈{0,1}

(U†
i |xi ⟩⟨xi|Ui)

⊗3σ⊗2
i ⊗ 11

)]
(3.57)

= tr

[
1
⊗2
r ⊗ ρ′

r⊗
i=1

(
3
4 ∑

π∈S3

Rπσ⊗2
i ⊗ 11

)]
. (3.58)

In the last step, we used the previous computation (3.35) (for d = 2). We can now perform the partial
trace over the first two systems based on the previous graphical calculus (3.36):

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
+

σi

σi
= tr(σ2

i )1+ 2σ2
i = 41 . (3.59)

Here, we used that Pauli operators square to the identity: X2 = Y2 = Z2 = 1. Hence, we obtain the
following variance from Eq. (3.58):

Var[ô] ≤ E[ô2] = tr

[
ρ′

r⊗
i=1

(31)

]
= 3r . (3.60)
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Discussion of shadow estimation with local Clifford unitaries. It is worth highlighting that, when
using local Clifford unitaries for shadow estimation, the postprocessing become particularly efficient.
At the same time, the sampling complexity for r = O(1) is constant, meaning that the whole shadow
tomography performance is efficient. In this setting, each measurement outcome corresponds to pro-
jecting onto a local Pauli basis element, and the corresponding classical shadow can be reconstructed
with computational cost scaling only linearly with the system size. Moreover, for observables that
are themselves local (i.e., supported on a constant number of qubits), the postprocessing requires
evaluating simple expectation values over these classical shadows. This makes the overall procedure
highly scalable in practice, since both the sample complexity and the computational overhead remain
independent of the global system size, provided the observables are local.

3.2.3 Beyond linear observables: the purity

Consider the problem of estimating the purity P(ρ) ≡ tr(ρ2) of a state ρ, for instance the reduced
density matrix of a global pure state |Ψ⟩. How do we estimate this quantity? Consider we have
M snapshot ρ̃r ≡ (U(r))†|x(r)⟩⟨x(r)|U(r). Since U are identically, independent, randomly distributed
from an ensemble G, and {x(r)|r = 1, . . . , M} are i.i.d. from U(r)ρ(U(r))†, the stochastic objects ρ̃(r)

and ρ̃(j) are uncorrelated for r ̸= j. Thus, we can construct an estimator of the system purity by
computing the monte-carlo sampling

P (e) =
1

M(M − 1)

M

∑
r ̸=j;j,r=1

tr(ρ̃(j)ρ̃(r)) =
2

M(M − 1) ∑
1≤j<r≤M

tr(ρ̃(j)ρ̃(r)) (3.61)

We want to compute the variance of the purity estimator P (e) for global Clifford estimator. We
have

Var
[
P (e)

]
=

(
M
2

)−2

∑
r<r′

∑
s<s′

(
E
[
tr(ρ̃(r)ρ̃(r

′)) tr(ρ̃(s)ρ̃(s
′))
]
−P(ρ)2

)
Let us expand these terms. When s = r and r′ = s′, we have(

M
2

)−2

∑
r<r′

E
[
tr(ρ̃(r)ρ̃(r

′))2
]
=

(
M
2

)−1

E[tr(ρ̃(1)ρ̃(2))2] , (3.62)

where we identified two reference copies via Haar invariance. If all the terms are different, one gets
via statistical independence of the copies and the replica invariance

E[tr(ρ̃(1)ρ̃(2))tr(ρ̃(3)ρ̃(4))]] = P(ρ)2. (3.63)

Finally, if at least one term l = i or l = j, then we have using Haar invariance and identically
independent distributed

2
(

M
2

)−2

∑
i<j

∑
k ̸=i,j

E[tr(ρ̃(1)ρ̃(2))tr(ρ̃(1)ρ̃(3))] = 2
(

N
2

)−1

(N − 2)E[tr(ρ̃(1)ρ)2] . (3.64)

Putting these terms together, we get the final result

Var
[
P (e)

]
=

(
M
2

)−1

Var
[
tr(ρ̃(1)ρ̃(2))

]
+

(
M
2

)−1

2(M − 2)Var
[
tr(ρ̃(1)ρ)

]
.
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The first term can be written explicitly as

Var
[
tr(ρ̃(1)ρ̃(2))

]
= E

U,V∈Cl(2N)
E
b,d

tr
[(

(2N + 1)U†|b⟩⟨b|U − I
) (

(2N + 1)V†|d⟩⟨d|V − I
)]2

−P(ρ)2

=
∫

dµH(U)dµH(V)

{
22N

[
(2N + 1)2|⟨0 |UV† |0⟩|2 − (2N + 2)

]2

×⟨0 |UρU† |0⟩⟨0 |VρV† |0⟩
}
−P(ρ)2

= 22N(2N + 1)4
∫

dµH(U)dµH(V)|⟨0 |UV† |0⟩|4⟨0 |UρU† |0⟩⟨0 |VρV† |0⟩

− (2N + 2 + P(ρ))2 , (3.65)

where in the second line we invoked the 3-design property of Clifford unitaries to replace the sum
with an integral over Haar measure dµH(U). The first term in the last line can then be rewritten as

22N(2N + 1)4
∫

dµH(U)⟨0 |UρU† |0⟩ tr
{(

(U†)⊗2|0⟩⟨0|⊗2U⊗2 ⊗ ρ
) ∫

dµH(V)(V†)⊗3|0⟩⟨0|⊗3V⊗3
}

,

(3.66)
and now the last integral can be computed using the Weingarten calculus, yielding

=
2N(2N + 1)3

2N + 2

∫
dµH(U)⟨0 |UρU† |0⟩(2 + 4⟨0 |UρU† |0⟩)

=
2N(2N + 1)3

2N + 2

(
2

2N + 4
1 + P(ρ)

2N(2N + 1)

)
=

2(2N + 1)2

2N + 2

(
2N + 3 + 2P(ρ)

)
, (3.67)

thus arriving at

Var
[
tr(ρ̃(1)ρ̃(2))

]
=

2(2N + 1)2

2N + 2

(
2N + 3 + 2P(ρ)

)
−
(

2N + 2 + P(ρ)
)2

. (3.68)

Following similar steps, the second term in Eq. (3.65) can be written as

Var
[
tr(ρ̃(1)ρ)

]
= E

U∈Cl(2N)
E
b

tr
[(

(2N + 1)U†|b⟩⟨b|U − I
)

ρ
]2

−P(ρ)2

= 2N
∫

dµH(U)
(
(2N + 1)2⟨0 |UρU† |0⟩2 − 2(2N + 1)⟨0 |UρU† |0⟩+ 1

)
⟨0 |UρU† |0⟩ − P(ρ)2

=
2N + 1
2N + 2

(
1 + 3P(ρ) + 2 tr(ρ3)

)
− 2 (1 + P(ρ)) + 1 −P(ρ)2

=
2N + 1
2N + 2

(
1 + 3P(ρ) + 2 tr(ρ3)

)
− (1 + P(ρ))2 . (3.69)

Putting everything together, we finally arrive at

Var
[
P (e)

]
=

(
M
2

)−1{2(2N + 1)2

2N + 2

(
2N + 3 + 2P(ρ)

)
−
(

2N + 2 + P(ρ)
)2

+ 2(M − 2)
[

2N + 1
2N + 2

(
1 + 3P(ρ) + 2 tr(ρ3)

)
− (1 + P(ρ))2

]}
. (3.70)

Thus the leading term is Var[P (e)
∞ ] ∼ 2(22N)

M(M−1) for large system size N.

3.3 Further reading

To be done.



CHAPTER 4

QUANTUM RANDOMNESS II

As argued previously in Sec. 2.2, Haar-random unitaries are notoriously expensive to implement
in that they need exponentially deep quantum circuits. For this reason, unitary designs have been
introduced as a way to mimic the Haar measure up to a certain moment. The prototypical example of
a unitary design is the Clifford group which is thus extensively used throughout the literature, and
also in our treatment of classical shadows in Ch. 3.

Nevertheless, there are two major problems with unitary designs: First, there are no practical
examples of unitary designs beyond the Clifford group and we are thus limited to third moments.
However, there are interesting properties in many-body physics that are described by much higher
moments. Second, Clifford unitaries need linear-depth circuits to be implemented and this is likely
the case for any unitary design. However, near-term devices are noisy and thus effectively limited in
the depth of the circuits they can execute. We would thus prefer ensembles with a more fine-grained
control on the circuit depth and, ideally, sub-linearly sized circuits.

From a practical point of view, it thus seems to be a good idea to take a constructive approach to
random unitaries by considering families of quantum circuits with variable depth, where the (local)
gates are drawn at random. We call the so-constructed ensemble a random quantum circuit (RQC).

4.1 Random quantum circuits

Intuitively, RQCs should become ‘more and more random’ with increasing circuit depth. However,
RQCs will typically never be a unitary design in the sense of the defining equation (2.32), this is

Mk(A) ̸= MRQC
k (A) := EU∼RQC

[
U⊗k AU⊗k,†

]
, (4.1)

where the average on the right hand side is over all unitaries in the RQC ensemble. Instead, (4.1) will
be fulfilled up to an error ε that becomes smaller with circuit depth. We then say that the RQC forms
an ε-approximate unitary design.

...

Figure 4.1: Random quantum circuits are circuits in which the gates are drawn randomly. Typically,
these gates are local and arranged in a specific layout, for instance in the popular brickwork layout
shown here. These circuits are typically composed of layers (shown by the dashed box) and gates in
each layer are drawn independently.

33
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In this chapter, we will consider a specific construction of random quantum circuits which we call
layered (we will encounter other examples later). For this, we assume that the circuit is composed of
repeated and independent layers. These layers typically have some specific structure or layout, for
instance, gates could be arranged in a brickwork pattern as in Fig. 4.1. Importantly, the gates within
every layer are drawn independently at random such that there are no correlations between the gates
or the layers.

Let us consider a single random layer distributed according to a probability measure ν on U(d)
and the associated k-fold twirl, typically called the (k-th) moment operator in the RQC literature:

Mν
k :=

∫
U⊗k( · )U⊗k,†dν(U) . (4.2)

Then, a random circuit with L layers has the form U = UL · · ·U1 where Ui ∼ ν.1 The moment
operator of the L-layer RQC is then given by

MνL
k =

∫
U⊗k

L · · ·U⊗k
1 ( · )U⊗k,†

1 · · ·U⊗k,†
L dν(U1) · · ·dν(UL) (4.3)

=
∫

U⊗k
L

(
· · ·
(∫

U⊗k
2

(∫
U⊗k

1 ( · )U⊗k,†
1 dν(U1)

)
dν(U2)

)
· · ·
)

U⊗k,†
L dν(UL) (4.4)

= (Mν
k)

L . (4.5)

We also emphasize that the (local) structure of each layer is also reflected in the moment operator
Mν

k . For instance, if we have a brickwork layout as in Fig. 4.1, then we can we can decompose every
layer unitary as U = UevenUodd where Uodd = U12 ⊗U34 ⊗ · · · ⊗Un−1,n and Ueven = 1⊗U23 ⊗U45 ⊗
· · · ⊗ Un−2,n−1 ⊗ 1. Let us for simplicity assume that all local gates Uij are distributed identically, for
instance according to the 2-qudit Haar measure. Then, Mν

k = Meven
k Modd

k by the same argument as
above, and

Meven
k = M12

k ⊗M34
k ⊗ · · · ⊗Mn−1,n

k =
(
Mloc

k

)⊗n/2
. (4.6)

A similar argument holds for the odd layers. We can visualize this by taking the brickwork circuit 4.1
and stack the k copies of each local unitary (channel) on top of each other, cf. Fig. 4.2. The averages
are now taken over the all bricks individually.

Following the intuition presented at the beginning of this section, the moment operator of a RQC
should converge to the Haar-random one with increasing circuit depth, this is

MνL
k = (Mν

k)
L → Mk for L → ∞ . (4.7)

One way of making this precise is by considering the eigenvalues of Mν
k . Since the eigenvalues of MνL

k
are simply powers of those, it is sufficient to study a single layer. But how different can the single-
layer moment operator Mν

k be from the Haar-random moment operator Mk which we have studied
so far?

Before we delve into this question, let us briefly recall that the adjoint ϕ† of a linear map ϕ is
defined by the equation

(A |ϕ(B)) = (ϕ†(A) |B) . (4.8)

Applied to the map ϕ = V( · )V†, we thus find that ϕ† = V†( · )V = ϕ−1. Hence,

(Mν
k)

† =
∫

U⊗k,†( · )U⊗kdν(U) =
∫

U⊗k( · )U⊗k,†dν(U†) = Mν̃
k , (4.9)

where ν̃(U) = ν(U†) is the measure under inversion. For Mν
k to be self-adjoint, it is thus sufficient

that ν is invariant under inversion which is however not always the case. For instance, the brickwork
example in Fig. 4.1 is not: Inverting a layer means exchanging the even and odd sublayers which

1Note that the product is distributed according to the convolution measure ν∗L.
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BA ...
k

Figure 4.2: Visualization of the k-fold action on replicas by stacking the unitaries on top of each other.
The local structure of the underlying circuit is preserved. Any k-th moment of the RQC can be written
in terms of ‘boundary conditions’ A and B to the circuit, and subsequent ensemble averages.

clearly leads to a different measure. Thus, we can generally not guarantee that the eigenvalues of Mν
k

are real or that Mν
k is even diagonalizable.

However, there is a simple observation about Mν
k : Since all unitaries of the form U⊗k commute

with permutations Rπ, we still have

Mν
k(Rπ) = U⊗k,†RπU⊗kdν(U) = Rπ , (4.10)

no matter what distribution ν we choose. As Mν
k might not be a self-adjoint superoperator, the right

eigenoperators Rπ are not automatically left eigenoperators as well. However, by Eq. (4.9), we find
that

(Mν
k)

†(Rπ) =
∫

U⊗k,†RπU⊗kdν(U) = Rπ . (4.11)

Hence, all permutations Rπ are left and right eigenoperators of eigenvalue 1, just as in the Haar-
random case. This means that Mν

k has the following matrix form in a suitable basis:

Mν
k ≃

(
1k! 0
0 ∗

)
, (4.12)

where ∗ is defined on the orthocomplement of the unitary commutant Commk. Note that the Haar-
random moment operator Mk has the same structure, but with ∗ = 0. Now, the L-layer moment
operator (Mν

k)
L is obtained by taking L-th powers of the blocks. Thus, the obtain the desired conver-

gence (4.7), we need that ∗L → 0. We here analyze the convergence in spectral norm. Recall that the
spectral norm ∥ϕ∥∞ is defined as the largest singular value of ϕ, or equivalently, the largest eigen-
value of the self-adjoint operator

√
ϕ†ϕ.

We say that Mν
k is gapped if ∥∗∥∞ ≤ 1 − ∆k with the spectral gap ∆k > 0. Again, this guarantees

that (Mν
k)

L → Mk and, moreover,

∥(Mν
k)

L −Mk∥∞ = ∥(Mν
k −Mk)

L∥∞ ≤ ∥Mν
k −Mk∥L

∞ ≤ (1 − ∆k)
L . (4.13)

Here, we used that Mν
kMk = Mk = MkM

ν
k by the invariance of the Haar measure and that the spectral

norm is submultiplicative. Hence, Eq. (4.13) states that the rate of convergence is determined by the
spectral gap.

It turns out that RQCs are generally gapped, at least if if ν is a universal measure, i.e. its support
contains a universal gate set. We will give a proof of this statement in Sec. 4.2, but since it is not of
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major importance for the remaining course, we consider this section optional and not treat the proof
in the lecture.

What does the spectral gap imply for the convergence of concrete moments to their Haar-random
value, i.e. for expressions of the form tr[B(Mν

k)
L(A)]? These moments correspond to certain boundary

conditions on the k-replica circuit, cf. Fig. 4.2. To bound the approximation error of a RQC, we use
that the spectral norm is an operator norm, meaning that

∥ϕ∥∞ = sup
X∈L(H)

∥ϕ(X)∥2

∥X∥2
. (4.14)

Hence, by using Cauchy-Schwarz inequality:

tr
[

B
(
(Mν

k)
L −Mk

)
(A)

]
≤ ∥B∥2∥

(
(Mν

k)
L −Mk

)
(A)∥2

≤ ∥A∥2∥B∥2
(
∥(Mν

k)
L −Mk∥∞

)
≤ (1 − ∆k)

L∥A∥2∥B∥2 (4.15)

Hence, the approximation error is lower than ε if

L ≥ log(ε)− log(∥A∥2∥B∥2)

log(1 − ∆k)
. (4.16)

Using that log(1 + x) ≤ x for x ≥ −1 this is implied for

L ≥ ∆−1
k (log(1/ε) + log(∥A∥2∥B∥2)) . (4.17)

Note that log(1/ε) ≥ 0 since 0 < ε < 1. Hence, the required number of layers is determined by the
size of the gap and the approximation error.

Now one may wonder that if ∥A∥2 = ∥B∥2 = 1 (for instance for quantum states) and ∆k is
constant, we would obtain convergence we have a constant number of layers. While it is true that we
would then achieve a constant error ε with a constant number of layers, this would not be enough as
the moment we are trying the approximate, tr[BMk(A)], is typically exponentially small in n and k.
Concretely, we typically need an additive error of the order of q−2nk to get a good approximation. We
can directly aim for a relative error ϵ by modifying our bound as follows

L ≥ ∆−1
k (log(1/ϵ) + log(∥A∥2∥B∥2/ tr[BMk(A)])) = ∆−1

k

(
log(1/ϵ) + log(1/ tr[B̂Mk(Â)])

)
, (4.18)

where Â = A/∥A∥2 and B̂ = B/∥B∥2. Now inserting tr[B̂Mk(Â)] ≈ q−2nk we get

L ≥ ∆−1
k (log(1/ϵ) + 2 log(q)nk) . (4.19)

This already suggests that we need a number of layers that is linear in nk to get a good approximation
to the Haar-random value of our moment.

Perhaps not surprisingly, the spectral gap depends strongly on the choice of RQC and will gen-
erally be a function of the number of qudits n and copies k. For instance, if we apply only a single
2-qudit gate in every layer instead of O(n) as in the brickwork circuit, Fig. 4.1, we should expect a
rescaling of O(1/n) of the spectral gap since we need O(n) more layers to achieve the same overall
number of gates. It is generally expected that the spectral gap of RQCs like the brickwork circuit is
constant in both n and k, at least for k ≤ O(d). Only recently, this was proven (up to logarithmic
factors): The spectral gap of brickwork RQCs is ∆k ≥ c log(k)−7 for some constant c > 0.

Conclusion. Combining the spectral gap with the error discussion, we can generally say that

L ≥ c−1 log(k)7 (log(1/ϵ) + 2 log(q)nk) , (4.20)

many brickwork layers are sufficient to approximate arbitrary Haar moments. This involves circuits
that are of linear depth in nk. Hence, random quantum circuits of linear depth behave as Haar-random
unitaries for (almost) all practical purposes.
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4.2 More on spectral gaps*

We have the following structural result on the spectrum of Mν
k .

Theorem 4.1 (Spectral properties of Mν
k). We have the following general properties:

(i) All eigenvalues of Mν
k have absolute values ≤ 1 ,

(ii) The 1-eigenspace of Mν
k is at least k!-fold degenerate, containing the unitary commutant Commk ,

(iii) If ν is universal (its support generates a dense subgroup of U(d)), then the 1-eigenspace is exactly k!-
dimensional. Thus, Mν

k is gapped.

Proof of Theorem 4.1. (i) Let us assume that A is an eigenoperator with eigenvalue λ ∈ C, i.e. Mν
k(A) =

λA. We denote by ∥A∥2
2 = (A |A) the Hilbert-Schmidt or Frobenius norm (the norm associated to the

trace inner product). Note that this norm is invariant under unitaries: ∥VA∥2
2 = tr((VA)†VA) =

tr(A† A) = ∥A∥2
2. Then, triangle and Cauchy-Schwarz inequality yield

|λ|∥A∥2
2 = |(A |Mν

k(A))| ≤
∫

|(A |U⊗k AU⊗k,†)|dν(U) ≤
∫
∥A∥2∥U⊗k AU⊗k,†∥2dν(U) = ∥A∥2

2 .

(4.21)

Hence, all eigenvalues lie in the unit disk.
(ii) was already proven in Sec. 4.1.
(iii) Let A be an eigenoperator of eigenvalue 1 and consider the map XU = id − U⊗k( · )U⊗k,†.

Then: ∫
(A |XU†XU |A)dν(U) = 2∥A∥2

2 −
∫
(A |U⊗k AU⊗k,† + U⊗k,† AU⊗k)dν(U) (4.22)

= 2∥A∥2
2 −

∫
2 Re

(
(A |U⊗k AU⊗k,†)

)
dν(U) (4.23)

= 2∥A∥2
2 − 2 Re(A |Mν

k(A)) = 0 . (4.24)

However, we also have

(A |XU†XU |A) = tr
(

A†(XU(A)− U⊗k,†XU(A)U⊗k)
)

(4.25)

= tr
(
(A − U⊗k AU⊗k,†)†XU(A)

)
= (XU(A) |XU(A)) ≥ 0 . (4.26)

Hence, the only way that the integral above can be zero is if

0 = (XU(A) |XU(A)) = ∥A − U⊗k AU⊗k,†∥2
2 ⇔ A = U⊗k AU⊗k,† , (4.27)

holds ν-almost everywhere (i.e. everywhere except on a subset of unitaries that have ν-measure zero).
Hence, if the support of ν contains a set of generators, A has to commute with generators of U(d)
and hence lies in the commutant of a dense subgroup of U(d). By continuity, this commutant is the
same as the one of U(d) and thus the 1-eigenspace of Mν

k is exactly Commk. To be done: show that
Mν

k is gapped (could still have an additional singular value 1).

4.3 Further reading

To be done.



CHAPTER 5

RANDOM DYNAMICS IN MANY-BODY SYSTEMS

5.1 Anticoncentration

5.1.1 Motivation and overview

In this section, we want to study properties of the outcome distribution of random quantum states.
As we will see, these distributions are notoriously hard to sample from – and thus they play a major
role in arguably the most important proposal for demonstrating a quantum advantage over classical
computers, namely random circuit sampling. Such quantum advantage experiments were experimen-
tally conducted the first time in 2019 by Google [6], and have been subsequently improved over the
last years with the latest experiments [7] being extremely convincing, even to critics.

But what is it about the outcome distributions that make such claims possible? Notably, probabil-
ity distributions are generically very complex and producing samples from a distribution is a prob-
lem with a long history in applied mathematics and computer science. This has resulted in famous
and important algorithms such as Metropolis-Hastings and other Markov chain Monte Carlo methods. In
contrast, some distribution are very easy for sampling, for instance the uniform distribution. More-
over, very concentrated or peaked distributions are also simpler to handle by standard algorithms, as
the convergence of the underlying Markov chains is very fast.

Hence, let us look at the outcome distribution produced by random quantum states, this is we
consider

p(x|U) := |⟨x |U |0⟩|2 , (5.1)

where x ∈ {0, . . . , q − 1}n is the measurement outcome and U is a random unitary from an ensemble
E . Importantly, we are going to focus on the case that x = 0 motivated by the observation

p(x|U) = p(0|X(x)U) , (5.2)

where X(x) = Xx1 ⊗ Xxn is a multi-qudit X gate (and X(x)|0⟩ = |x⟩). Throughout this section, we
will assume that the ensemble E is invariant under left multiplication with X gates, such that p(0|U)
follows the same distribution has p(x|U). This is certainly true in many relevant cases, e.g. for Haar-
random unitaries, and can easily enforced by adding a random X gate at the end of the circuit.

Note that for such an invariant ensemble E , we have

EU∼E ∑
x

p(x|U) = ∑
x

EU∼E p(0|X(x)U) = ∑
x

EU∼E p(0|U) = d EU∼E p(0|U) . (5.3)

But clearly, we also get

∑
x

p(x|U) = ∑
x

tr(|x⟩⟨x|U|0⟩⟨0|U†) = tr(U|0⟩⟨0|U†) = 1 , (5.4)

which implies that we exactly have EU∼E p(0|U) = d−1 independent of details on E . Hence, the
expected outcome distribution is a uniform one – however the individual realizations could each be
very far from uniform: They could be very concentrated, but in different regions, and only appear
flat when averaged out.

In the context of random circuit sampling, a concentration of probabilities can be exploited by
a classical algorithm to spoof the sampling task. This is because if most of the probability mass is
concentrated in a small region, the probabilities have to very tiny (much smaller than 1/d) elsewhere,
i.e. on most of the sample space. These probabilities are in fact so small that a classical spoofer can
set them to zero and still be able to reliably sample from the outcome distribution. To prevent this,
we look for an ensemble that does not allow for concentration in the outcome distribution, at least
not for a large fraction of the instances.

38
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Defining (anti)concentration. The intuition behind our approach is that we want to quantify how
much p(0|U) fluctuates around its mean. If the fluctuations are comparably small, individual real-
izations cannot be very concentrated. Formally, we study the variance of p(0|U), this is

VarU∼E [p(0|U)] = EU∼E
[
p(0|U)2]− EU∼E [p(0|U)]2 = EU∼E

[
p(0|U)2]− 1

d2 . (5.5)

Because the variance is non-negative, the second moment EU∼E p(0|U)2 has to be at least d−2. If we
also have EU∼E p(0|U)2 ≤ cd−2 for a constant c ≥ 1, then the standard deviation is O(d−1) and hence
the fluctuations around the mean are of the same order as the mean value and can be considered
small.

Definition 5.1. We say that a (X-invariant) unitary ensemble E anticoncentrates if there is a constant c ≥ 1
(not depending on the system size) such that EU∼E p(0|U)2 ≤ cd−2. Clearly, this is a property of the generated
state ensemble only. Thus, we also say that a state ensemble E ′ anticoncentrates if Eψ∼E ′ p(0|ψ)2 ≤ cd−2.

In the RQC literature, we typically encounter a slightly different convention for the second mo-
ment, with a different normalization There, we have

Z := EU∼E ∑
x

p(x|U)2 = d EU∼E
[
p(0|U)2] , (5.6)

where the last equality follows for ensembles which are invariant under X gates (as the ones we
consider here). Z is called the (average) collision probability in the RQC literature and the anticoncen-
tration condition translates to Z ≤ cd−1.

We can further formalize our intuition about fluctuations around the mean and turn them into a
statement about concentration of probability: As described above, we can do this by bounding the
likelihood of probabilities that are smaller than 1/d. To this end, we use the Paley-Zygmund inequality:
Given a bounded (and non-zero) random variable 0 ≤ Y ≤ 1 and 0 ≤ α ≤ 1, it holds:

Pr [Y > αE[Y]] ≥ (1 − α)2 E[Y]2

E[Y2]
. (5.7)

Applied to Y = p(0|U) and an anticoncentrating ensemble E , we have

PrU∼E
[

p(0|U) >
α

d

]
≥ (1 − α)2

c
. (5.8)

Thus, for a constant fraction of instances p(0|U) cannot be much smaller than, say, 1
2d . This means

that these outcome distributions cannot be too concentrated. An illustration of the distribution of
outcome probabilities for concentrating and anticoncentrating ensembles is shown in Fig. 5.1.

Anticoncentration of the Haar measure. Notably, Haar-random unitaries exactly have the right
scaling of the second moment an thus anticoncentrate. Indeed, we found before (cf. Example 2.3):

EU∼U(d)
[
p(0|U)2] = ∫

|⟨0 |U |0⟩|4dU =
2

d(d + 1)
. (5.9)

We can thus take the constant in Def. 5.1 to be c = 2. We may even look at higher statistical moments
of the outcome distribution, which can give us further details about its structure. As we will see,
the knowledge of all the moments allow us to deduce the exact distribution of probabilities. These
higher moments are called inverse participation ratios in the context of Hilbert-space delocalization in
many-body physics, and given by

Ik :=
1
d ∑

x
Eψ∼E p(x|ψ)k . (5.10)
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Figure 5.1: An illustration of the distribution of outcome probabilities for ensembles with different
values of the collision probability Z, cf. Eq. (5.6). Here, we consider n qudits of dimension q such
that the total dimension is d = qn. For a deterministic ensemble that always produced the uniform
distribution, Z = 1/d, and the distribution is peaked at 1d (left panel). Anticoncentrated ensembles,
Z ≤ c/d, cannot produce too many very small probabilities and thus the distribution has to be
reasonably broad (middle panel). If Z is too large (right panel), then probabilities are more likely to
be very small. The associated outcome distributions may concentrate as a consequence. Figure taken
from Ref. [8].

For Haar-random unitaries, we can compute all the moments exactly using Lem. 2.3:

Ik :=
1
d ∑

x

∫
p(x|U)kdU (5.11)

=
∫

U
tr(|0⟩⟨0|⊗kU⊗k|0⟩⟨0|⊗kU⊗k,†)dU (5.12)

= ∑
π,σ∈Sk

Wπ,σ tr(R†
σ|0⟩⟨0|⊗k) tr(Rπ|0⟩⟨0|⊗k) (5.13)

= ∑
π,σ∈Sk

Wπ,σ = k!G−1
k,d =

k!(d − 1)!
(d + k − 1)!

=
k!

d(d + 1) . . . (d + k − 1)
. (5.14)

From the knowledge of the all moments, we can compute the generating function and then the
distribution of outcome probabilities via a Laplace transform, cf. exercise sheet 3. This yields the
Porter-Thomas distribution

P(w) =
d − 1

d

(
1 − w

d

)d−2
. (5.15)

Anticoncentration of random quantum circuits. Suppose that the ensemble E is now given by a
random quantum circuit (RQC). These typically feature local Haar-random gates and are thus also
invariant under X gates. Note that I2/Z is a moment of the RQC in the sense of Sec. 4.1 with k = 2
replicas. Hence, a sufficiently deep RQC reproduces the Haar values, say up to a relative error ϵ, this
is

I2 = EU∼RQC tr(|0⟩⟨0|⊗2U⊗2|0⟩⟨0|⊗2U⊗2,†) ≤ (1 + ϵ)
2

d(d + 1)
. (5.16)

Thus, we find that RQCs anticoncentrate with constant c = 2(1 + ϵ). Note that ϵ = 1 would be
sufficient.

But how deep should the RQC be? In the notation of Sec. 4.1, the moment in Eq. (5.16) is described
by the operators A = |0⟩⟨0|, B = dA, Â = A, and B̂ = A. To achieve a relative error ϵ, we had the
estimate

L ≥ ∆−1
2
(
log(1/ϵ) + log(1/ tr[B̂M2(Â)])

)
≈ ∆−1

2 (log(1/ϵ) + 2 log(q)n) , (5.17)

where we used that
tr[B̂M2(Â)] = EU∼U(d)

[
p(0|U)2] = 2

d(d + 1)
≤ 2

d2 . (5.18)
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Using that for instance brickwork circuits achieve a constant spectral gap ∆2 (and we expect a similar
result for other circuit families), we can thus conclude that random quantum circuits anticoncentrate in
linear depth.

However, we will see in the later sections, that anticoncentration is a phenomenon which already
happens exponentially faster than we would expect from these spectral gap arguments. To this end,
we will compute I2 for three different ensembles, thereby exhausting the current state of knowledge
of explicit results. In the end of this chapter, we will also briefly comment on the failure of spectral
gap arguments to properly capture the convergence rate of I2.

Relation to quantum advantage. How does anticoncentration relate to quantum advantage based
on random circuit sampling experiments? It should be clear that anticoncentration alone cannot
be sufficient for a quantum advantage: Clifford unitaries form an exact unitary 2-designs and thus
reproduce the Haar value (5.9) exactly. Hence, Clifford unitaries anticoncentrate, but their outcome
distributions are flat and can be computed efficiently, allowing for trivial sampling.

Instead, anticoncentration is a crucial ingredient in a series of complexity-theoretic reduction
steps. Importantly, we need a hardness assumption to begin with, and –as it is often the case in
complexity theory– we should not expect that this one can be rigorously proven. Here, it is assumed
that it is hard to approximate the outcome probabilities of a RQC on average. Using anticoncentration,
this can then be used to show that it is also average-case hard to (approximately) sample from the
outcome distribution.

5.1.2 Anticoncentration of random matrix-product states

Random matrix product states (RMPS) Matrix product states (MPS) are a fundamental class of
quantum states |ψ⟩ represented by the wave function

|ψ⟩ = ∑
x1,...,xn
α,β,...,γ

A(1)
α (x1)A(2)

αβ (x2) . . . A(n)
γ (xn)|x1x2 . . . xn⟩ , (5.19)

where xi ∈ {0, 1, . . . , q − 1} and α, β...γ ∈ {1, 2, . . . , χ} are auxiliary indices spanning a space of di-
mension χ, the so-called bond dimension. The tensors A(i)

αβ(xi) can be seen as χ× χ matrices dependent
on the local qubit variable xi. The state can be pictorially represented as

A(1) A(n−2)A(2) A(n−1)A(3) A(n)
, (5.20)

where the vertical links correspond to the local, physical Hilbert space and thick lines indicate con-
tractions over the bond dimension χ. Random Matrix Product States (RMPS) are defined by sampling
the tensors from an appropriate probability measure. One common choice is to take the A(i) to be
equal to a Haar-random matrix V(i) ∈ U(qχ) applied to the local basis state |0⟩. Graphically, we thus
have, in the bulk, the following:

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩

V(i−2) V(i−1) V(i ) V(i+1) V(i+2)

. (5.21)

While this seems like a straightforward ansatz, the question remains how to choose the boundary
conditions, i.e. the first and last tensors in the chain. This turns out to be a somewhat subtle issue
tied to the normalization of the represented state – a well-known topic in the MPS literature. Indeed,
normalization requires that

1 =

A(1)

A(1)†

A(n−2)

A(n−2)†

A(2)

A(2)†

A(n−1)

A(n−1)†

A(3)

A(3)†

A(n)

A(n)†

, (5.22)
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To achieve this, we here adapt what is known as a right-normalized form of the MPS. More precisely,
note that if we take A(n) = V(n) to be a q × q unitary, then

A(n−1)

A(n−1)†

V(n)

V(n)†

=

A(n−1)

A(n−1)†

=

A(n−1)

A(n−1)†

, (5.23)

We can now repeat this trick and take A(n−1) = V(n−1) to be a q2 × q2 unitary, and similar A(n−j) =
V(n−j) ∈ U(qj+1). Let us assume that the bulk bond dimension is a power of the local physical
dimension , χ = qr (we can always do this by enlarging the space). Then, we can stop the doubling
procedure at j = r − 1 and continue with the bulk form of the MPS (5.21) for Vn−r. This is because
we have

|0⟩

⟨0|

V(n−r)

V(n−r)†

=

|0⟩

⟨0|

= (5.24)

For the left boundary condition, we simply contract with |0⟩⊗r.
For r = 3, we would for instance have

|ψ⟩ =

|0⟩ |0⟩ |0⟩

|03⟩ V(1) V(2) V(n−3) V(n−2) V(n−1) V(n)

, (5.25)

Through a suitable reshaping of Eq. (5.25), we can represent the state |ψ⟩ by a quantum circuit in the
form of a staircase,

|ψ⟩ =

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

V(1)

V(2)

V(3)

V(4)

V(5)

V(6)

. (5.26)

This also clearly shows that the construction results in a normalized state |ψ⟩.
To construct the random MPS ensemble, we will now draw the unitaries V(i) Haar-randomly

from the appropriate unitary groups. Note that we can absorb the last r (in the example: 3) unitaries
into the (n − r)th one using the invariance of the Haar measure. This simplifies the circuits slightly,
resulting in a random state preparation circuit of the form

|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩

V(1)

V(2)

V(3)

. (5.27)

Note that the number of wires is exactly the number of physical legs (i.e. qudits n) in the original
MPS (5.20). The number of gates is n − r where χ = qr.
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Anticoncentration of RMPS We now study anticoncentration of n-qudit RMPS given by the stair-
case circuit in Eq. (5.27). Using the invariance under X gates, the IPRs (5.10) can be written as

IRMPS
k = EU∼RMPS tr

(
|0n ⟩⟨0n|⊗kU⊗k|0n ⟩⟨0n|⊗kU⊗k,†

)
. (5.28)

We can depict this as a k-copy replica circuit, constructed from Eq. (5.27), where the averages over
unitaries are performed locally. Recall that the local unitaries act on r + 1 qudits with χ = qr being
the bond dimension. The local averages over qχ-dimensional Haar-random unitaries thus yield the
Haar-twirl Mk ≡ Mk(qχ). We have an additional contraction with all-zeroes states |0nk) := |0n ⟩⟨0n|⊗k

at the end which we draw again using hollow circles:

Mk

Mk

Mk

Mk

Mk

(5.29)

Here, each thick wire stands for r qudits, representing a χ = qr-dimensional system. We have the
following Weingarten expansion (2.19):

Mk = ∑
τ,σ∈Sk

Wτ,σ(qχ)|Rτ(q)⊗ Rτ(χ))(Rσ(χ)⊗ Rσ(q)| . (5.30)

It will turn out to be convenient to keep the explicit dependence on the dimension in the Weingarten
matrix and the permutations. Since (Rσ |0nk) = (0nk |Rτ) = 1, we have the following identity

Mk = M̃k
≃ M̃k

. (5.31)

Here,
M̃k = ∑

τ,σ∈Sk

Wτ,σ(qχ)|Rτ(χ))(Rσ(χ)| . (5.32)

Note this is not again a Haar twirl as the Weingarten matrix is slightly off (it should be W(χ)). Since
we have n − r gates in total, we have to compute

M̃k

n − r
. (5.33)

Analogous to Eq. (5.14), applying the first M̃k to the zero state results in

M̃k|0nk) = ∑
τ,σ∈Sk

Wτ,σ(qχ)|Rτ(χ)) = G−1
k,qχ ∑

τ∈Sk

|Rτ(χ)) . (5.34)

Contracting this with the next M̃k yields

M̃2
k |0nk) = G−1

k,qχ ∑
τ,σ,π∈Sk

Wπ,σ(qχ)Gσ,τ(χ)|Rπ(χ)) = G−2
k,qχGk,χ ∑

π∈Sk

|Rπ(χ)) . (5.35)
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In other words, M̃k|0nk) is an eigenvector of M̃k with eigenvalue G−1
k,qχGk,χ. Hence,

M̃n−r
k |0nk) = (G−1

k,qχGk,χ)
n−r−1G−1

k,qχ ∑
τ∈Sk

|Rτ(χ)) , (5.36)

and the final contraction with (0nk| simply adds a k!. We thus arrive at the result

IRMPS
k = k!G−n+r

k,qχ Gn−r−1
k,χ

= k!
(

(qχ − 1)!
(qχ + k − 1)!

)n−r ( (χ + k − 1)!
(χ − 1)!

)n−r−1

= k!

[
∏k−1

m=0(χ + m)
]n−r−1

[
∏k−1

m=0(qχ + m)
]n−r . (5.37)

To analyze the scaling behaviour of this expression, we use the following identity[
k−1

∏
m=0

(αχ + m)

]β

= (αχ)βk

[
k−1

∏
m=0

(1 +
m
αχ

))

]β

(5.38)

= (αχ)βk exp

[
β

k−1

∑
m=0

log(1 + m/(αχ))

]
(5.39)

= (αχ)βk exp
[

k(k − 1)
2

β

αχ
+ O

(
βk3

α2χ2

)]
, (5.40)

coming from the first order Taylor expansion log(1+ x) = x +O(x2) and providing a decent approx-
imation at large χ. Putting these pieces together we obtain the final expression

IRMPS
k = k!

χ(n−r−1)k

(qχ)(n−r)k
exp

[
k(k − 1)

2

(
n − r − 1

χ
− n − r

qχ

)
+ O

(
nk3

χ2

)]
(5.41)

= k!
q−rk

q(n−r)k
exp

[
k(k − 1)

2
q − 1

q
n − r

χ

(
1 − 1

χ

)
+ O

(
nk3

χ2

)]
(5.42)

=
k!

qnk exp
[

k(k − 1)
2

(q − 1)
q

n − r
χ

+ O
(

nk3

χ2

)]
(5.43)

≃ IHaar
k exp

[
k(k − 1)

2
(q − 1)

q
n − r

χ
+ O

(
nk3

χ2

)]
, (5.44)

where we recognized IHaar
k ≃ k!

qnk = k!
dk at leading order in n ≫ 1.

From Eq. (5.43), it is straightforward to decide when RMPS anticoncentrate: Setting k = 2, we
have to establish that IRMPS

2 ≤ cd−2 for a constant c ≥ 1. To this end, we have to make the exponential
in Eq. (5.43) smaller than a constant. Here, it is certainly enough to choose χ ≥ c′n for a suitable
constant c′ such that n−r

χ ≤ 1/c′. Thus, we need a bond dimension linear in the system size for RMPS to
anticoncentrate. In the general context, such MPS are not highly entangled and thus the requirements
for anticoncentration seem to be rather low from this point of view.

For general k, Eq. (5.44) implies that choosing χ ≥ c′nk2 for a suitable constant c′ will make IRMPS
k

only a constant multiple of the Haar value.

5.1.3 Anticoncentration of super-brickwork circuits

In this section, we discuss another ensemble of random states for which the IPR (5.10) can be derived
exactly, and thus anticoncentration can be analyzed analytically. In contrast to the RMPS case from
Sec. 5.1.2, the generating circuits will be closer to the random circuits studied in Sec. 4.1, and can be
more reasonably endowed with a notion of locality and circuit depth.



CHAPTER 5. RANDOM DYNAMICS IN MANY-BODY SYSTEMS 45

These circuits can be understood as a two-layer brickwork circuit where the individual bricks,
i.e. gates, act on a large number of qudits:

|ψ⟩ = . (5.45)

As before, the thick wires indicate a large local dimension χ and can also be thought as concatenated
qudits. We call circuits of the form (5.45) super-brickwork circuits. Due to the presence of only two
layers, these circuits are much simpler to handle than their deep analogues from Sec. 4.1.

After executing the Haar-average over the local gates, we obtain

Ik =
Mk Mk Mk Mk

Mk Mk Mk
. (5.46)

Similar to Sec. 5.1.2, we have

Mk = ∑
τ,σ∈Sk

Wτ,σ(χ
2)|Rτ(χ)⊗ Rτ(χ)) = G−1

k,χ2 ∑
τ∈Sk

|Rτ(χ)⊗ Rτ(χ)) . (5.47)

Contracting with the first zero on the top left yields

Mk = G−1
k,χ2 ∑

τ∈Sk

|Rτ(χ)) . (5.48)

Likewise

Mk

Mk
= G−2

k,χ2 ∑
σ,τ∈Sk

(Rσ(χ)|(Rσ(χ) |Rτ(χ)) = G−2
k,χ2Gk,χ ∑

σ∈Sk

(Rσ(χ)| . (5.49)

Here, we used Lem. 2.3 for the column sum of the Gram matrix Gσ,τ(χ) = (Rσ(χ) |Rτ(χ)). We can
repeat the procedure

Mk Mk

Mk
= G−3

k,χ2G2
k,χ ∑

τ∈Sk

|Rτ(χ)) . (5.50)

The situation is quite the same as for RMPS: The uniform superposition of permutation operators
behaves like an eigenvector with eigenvalue G−1

k,χ2G1
k,χ (it is not quite that because it we also take the

adjoint every time, transforming bras into kets and vice versa).
Nevertheless, it should be clear that we get a factor G−1

k,χ2 for every brick in the circuit and a factor
Gk,χ for every link connecting two bricks. If N is the number of “local” systems (the thick wires), then
the total number of bricks will always be N − 1: If N is even, then we have N/2 bricks in the first
layer and N/2 − 1 brick in the second resulting in N − 1 in total. If N is odd, we have (N − 1)/2
bricks in the first and second layer, resulting again in a total of N − 1. The number of links between
the bricks is always one less, resulting in the explicit formula

ISBW
k = k!G−(N−1)

k,χ2 GN−2
k,χ . (5.51)
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5.1.4 Anticoncentration of 2-local brickwork circuits

In this section, we get back to the brickwork circuits that we originally consider in Ch. 4 and show that
these anticoncentrate in logarithmic depth. It turns out that this circuit ensemble is actually the most
complicated one to study because we have many layers and thus the direct contraction strategies we
persued in the last sections does not work due to loops (similar as in 2D tensor networks). We will
thus have to use a different strategy, which also only works in the k = 2 case and not for higher k.

Our goal is thus to compute IBW
2 for a L-layer brickwork circuit (with periodic boundary condi-

tions) with Haar-random local gates acting on two qudits each. We use the Weingarten expansion

M2 = ∑
π,σ∈S2

Wπ,σ(q2)|r⊗2
π )(r⊗2

σ | . (5.52)

Note that we only deal with two permutations here: S2 = {1, F} where F is the flip (or swap)
operator. We computed the k = 2 Weingarten matrix in Ex. 2.2 as

W(q2) =
1

q4 − 1

(
1 −q−2

−q−2 1

)
. (5.53)

Similar to the last sections, we will exploit that permutations factorize over the qudits. We can thus
expand the circuit dynamics in the local permutation basis {1, F}⊗n. Using the Weingarten expansion
(5.52), we can compute the action of the local moment operators in this basis:

1⊗ 1 7→ 1⊗ 1 , 1⊗ F 7→ q
q2 + 1

(1⊗ 1+ F ⊗ F) ,

F ⊗ F 7→ F ⊗ F , F ⊗ 1 7→ q
q2 + 1

(1⊗ 1+ F ⊗ F) ,
(5.54)

Interpreting the basis C := {1, F}⊗n as a configuration space, we see that the local moment operators
perform local changes to a given configuration according to Eq. (5.54). Importantly, all coefficients
are non-negative and can be seen as weights in a stochastic process. For instance, if the initial local
configuration is 1⊗ F, it is transformed to either 1⊗ 1 or F ⊗ F with the same weight q/(q2 + 1). In
the following, we denote the configuration in the t-th step as γ(t) ∈ C.

Incorporating boundary conditions. The final configuration γ(L) is contracted with an all-zero
state which always yields one, tr(γ(L)|0⟩⟨0|⊗2) = 1, independent of the configuration. The initial
configuration is obtained by locally twirling the zero state, which yields (cf. Sec.5.1.2)

M2 =
1

q2(q2 + 1)
(1⊗ 1+ F ⊗ F) . (5.55)

Thus we obtain the following initial state[
1

q2(q2 + 1)
(1⊗ 1+ F ⊗ F)

]⊗ n
2

=
1

qn(q2 + 1)
n
2

∑
γ(1)∈C1

γ(1) , (5.56)

where C1 := {1⊗1, F⊗F}⊗ n
2 ⊂ C. Note that the first layer of the circuit has been explicitly absorbed

into this initial state, i.e. we are left with L − 1 layers.
Let us denote the transformation matrix of the t-th layer as M(t): This is simply a tensor product

of n/2 many local transformation matrices as given in Eq. (5.54). The only difference between the
layers is given by the translation of bricks, i.e. whether the local action is on ‘even pairs’ or ‘odd
pairs’ of qudits. We can then rewrite IBW

2 as

IBW
2 =

1
qn(q2 + 1)

n
2

∑
γ

L

∏
t=2

M(t)
γ(t),γ(t−1) =:

1
qn(q2 + 1)

n
2

∑
γ

wt(γ) , (5.57)

where wt is the combined weight of the trajectory γ = (γ(1), . . . , γ(L)) ∈ C1 × C(L−1) given by the
product of matrix coefficients.
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F

1

F

F

1

1

Domain wall rules:

1. Domain walls move either up or down
through gates with equal weight q/(q2 + 1)

2. Domain walls annihilate when they meet

3. Domain walls cannot be created

Figure 5.2: Illustration of the domain wall picture and the rules for domain wall dynamics. When
domain walls ‘hit’ gates, they move either up or down with equal weight. The configuration thus
branches in such a case, here indicated by the blue and green dotted lines. In the blue case, the
domain wall between the fourth and fifth qudit annihilates with the upmoving blue domain wall.

Domain wall picture. How can we keep track of the relevant trajectories in Eq. (5.58)? Most of the
trajectories have weight zero and are thus not allowed. A neat way of doing that is by introducing do-
main walls. A domain wall separates qudit segments with different configuration – or put differently,
every time the configuration changes, we have a domain wall. Notably, always two permutation con-
figurations map to the same domain wall configuration. Using the transformation matrix (5.54), we
can easily come up with rules for the domain wall (DW) dynamics, cf. Fig. 5.2. We can then rewrite
the IPR as

IBW
2 =

2
qn(q2 + 1)

n
2

∑
G

wt(G) , (5.58)

where G = (G(1), . . . , G(L)) is now a trajectory of domain walls, and every G(t) is simply a set that
contains the qudit index i if there is a domain wall between qudit i and i + 1.

The dynamics of local permutation configurations correspond precisely to a classical ferromag-
netic spin model of n spin- 1

2 s. Indeed, if we replace the entire circuit by a Haar random unitary, the
only allowed final configuration would be 1⊗n and F⊗n, corresponding to the entire system being
in either ‘spin up’ or ‘spin down’ and thus to the absence of domain walls. The dynamics of the
brickwork circuit are such that domain walls annihilate over time and hence the ‘equal-spin sectors’
grow. Thus, if we let time run long enough, we will find a single spin sector with high probability.

To make this precise, we note that we can decompose DWs disjointly as G(t) = G0(t) ⊔ G∗(t) (as
sets) such that G∗ contains only DWs that stretch from left to right and in G0 all DWs annihilate at
some time t < L. We say that the annihilating DWs form ‘arcs’. Thus, this decomposition separates
the arcs from the rest, cf. Fig. 5.3. Importantly, the weight function separates over this disjoint union,

wt(G) = wt(G0)× wt(G∗) . (5.59)

This is because the weight is a product of local weights over time and the weight of having no DW
in a certain position is 1. We can thus simply pull out all weights corresponding to DWs in G∗ into a
separate weight term.

Importantly, for infinite circuit depth we should retrieve the Haar value. But the DWs that stretch
from left to right (i.e. those that do not annihilate) are suppressed in weight as ( q

q2+1 )
L, and hence in

the limit L → ∞ only DWs with arcs (of type G0) contribute to the Haar value. However, note that
these arcs could be arbitrarily long (but finite as the weight would otherwise be again zero). To make
this precise, let us define

G0(L) := {DW trajectories of length L with only arcs} , (5.60)
G0(∞) := {DW trajectories of infinite length with only finite-length arcs} , (5.61)
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Figure 5.3: Separating arcs from the remaining DWs. Taken from Ref. [8].

We can embed G0(L) into G0(∞) by padding with empty sets (no DWs) and the weight does not
change under this embedding (as no DWs have weight 1). We thus have the following inequality:

IHaar
2 =

2
qn(q2 + 1)

n
2

∑
G0∈G0(∞)

wt(G0) ≥
2

qn(q2 + 1)
n
2

∑
G0∈G0(L)

wt(G0) , (5.62)

which simply follows by restricting the index set and the non-negativity of the weight function.
Hence the total weight of the ‘only arcs’ contribution converges from below to the Haar value for
L → ∞.

We are now ready to combine all the above observations and compute IBW
2 . For the sake of nota-

tion, we define

Gr(L) := {DW trajectories of length L with r domain walls in the end} , (5.63)

G̃r(L) := {DW trajectories of length L with r domain walls in the end and no arcs} , (5.64)

Note that because of the periodic boundary conditions, we need to have an even number of domain
walls at the end. We then compute

IBW
2 =

2
qn(q2 + 1)

n
2

n/2

∑
r=0

∑
G∈G2r

wt(G) (5.65)

=
2

qn(q2 + 1)
n
2

n/2

∑
r=0

∑
G∈G̃2r

∑
G′∈G0

G∩G′=∅

wt(G)wt(G′) (5.66)

≤

n/2

∑
r=0

∑
G∈G̃2r

wt(G)

( 2
qn(q2 + 1)

n
2

∑
G′∈G0

wt(G′)

)
(5.67)

≤

n/2

∑
r=0

∑
G∈G̃2r

wt(G)


︸ ︷︷ ︸

:=(1+ε)

IHaar
2 . (5.68)

Here, the first inequality follows from ignoring the disjointness which makes the set of admissable
G′ larger and thus also the total sum (because wt is non-negative). The second inequality follows
from Eq. (5.62). To bound the error term, we note the following:

1. As there are no arcs, the number of DWs is conserved over time.
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2. The number of initial DW configurations with 2r domain walls is (n/2
2r ) since we can only place

DWs at even positions, cf. Eq. (5.56).

3. At every time step, each DW necessarily encounters a gate and has to move up or down, picking
up a weight factor q/(q2 + 1).

4. DWs in G̃2r are not allowed to annihilate (and also not to cross!). But if we allow crossing, this
can only make the sum larger.

Combining all of these, we can bound

1 + ε ≤
n/2

∑
r=0

(
n/2
2r

)
22r(L−1)

(
q

q2 + 1

)2r(L−1)

, (5.69)

where we used that every of the 2r DWs contributes a weight factor in every of the L − 1 time steps,
and there are 22r(L−1) many trajectories associated with an initial DW configuration (allowing cross-
ing). Setting a := − log(2q/(q2 + 1)), we find

ε ≤
n/2

∑
r=0

(
n/2
2r

)
22r(L−1)e−2ra(L−1) ≤

(
1 + e−a(L−1)

)n/2
− 1 , (5.70)

where we completed the binomial sum by adding the odd terms. We then use the following lemma:

Lemma 5.1. Let b ∈ N and 0 < c ≤ 1/b. Then:

(1 + c)b ≤ 1 + cb(e − 1) . (5.71)

Proof.

(1 + c)b =
b

∑
k=0

(
b
k

)
ck = 1 + cb

b

∑
k=0

(
b
k

)
ck−1

b

≤ 1 + cb
b

∑
k=0

(
b
k

)
b−k = 1 + cb

(
(1 + b−1)b − 1

)
≤ 1 + cb(e − 1) . (5.72)

To use the lemma, let us assume that L ≥ log(n)/a + 1. We find

ε ≤ (e − 1)ne−a(L−1) = exp [log(n)− La + log(e − 1) + a] ≤ e−a(L−L∗) , (5.73)

where we defined
L∗ :=

1
a

log(n) + 1 +
1
a

log(e − 1) . (5.74)

Hence, we see that as soon as L ≥ L∗ (fulfilling the lemma’s assumption), the error is less than 1 and
find anticoncentration at logarithmic depth. The error decays exponentially in L − L∗.

5.1.5 Further reading on anticoncentration

Coming soon.

5.2 Entanglement dynamics and membrane picture

Coming soon.
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APPENDIX A

SOME LINEAR ALGEBRA

This section gives a basic introduction to the linear algebraic concepts used in this course. Most of
this should already be known from linear algebra and quantum mechanics lectures. At this point, the
lectures notes are more detailed than the lecture to achieve a certain self-containement of the notes
and provide a reference for later stages of the course.

A.1 States, operators, superoperators

State space As usual, quantum mechanics is modeled on a Hilbert space H, which we take, in good
quantum info tradition, to be finite-dimensional for the remainder of this course. Hence, we can simply
think of H = Cd with the standard basis |x⟩ labeled by integers x = 0, 1, . . . , d − 1, and the standard
inner product

⟨ψ |φ⟩ =
d−1

∑
x=0

ψ̄x φx , (A.1)

where ψx = ⟨x |ψ⟩ and φx = ⟨x |φ⟩ are the coefficients in the standard basis. Typically, we take
vectors ψ ∈ H to be normalized: ⟨ψ |ψ⟩ = 1.

The notation of the inner product as a ‘bracket’ motivates the popular Dirac or bra-ket notation
which we adopt here: In this context, vectors ψ ∈ H are called kets and written as |ψ⟩. The corre-
sponding bra is a dual vector ⟨ψ| ∈ H∗ and given by the linear form H ∋ φ 7→ ⟨ψ |φ⟩.1 While the pair-
ing between a bra and ket yields the inner product (the ‘bracket’), the pairing between a ket and bra
forms a so-called outer product |ψ⟩⟨φ| which is a linear operator on H that acts as H ∋ χ 7→ |ψ⟩⟨φ |χ⟩.

Linear operators The vector space of all linear operators A : H → H is denoted by L(H). For any
A ∈ H, its adjoint A† is the linear operator for which

⟨ψ |Aφ⟩ = ⟨A†ψ |φ⟩ , ∀ψ, φ ∈ H . (A.2)

If represented in an orthonormal basis, such as the standard basis, the adjoint operator is the conju-
gate transpose matrix, A† = Ā⊤.

Definition A.1. In the following, we define some relevant classes of operators:

• Hermitian (or self-adjoint) operator: A ∈ L(H) such that A† = A. Hermitian operators have only real
eigenvalues and an orthonormal eigenbasis.

• Unitary operator: U ∈ L(H) such that U†U = UU† = 1.

• Positive semi-definite (psd) operator: Hermitian A ∈ L(H) with only non-negative eigenvalues. We
write A ≥ 0.

• Projector: Hermitian P ∈ L(H) such that P2 = P.

• Quantum state: ρ ∈ L(H) such that ρ ≥ and tr ρ = 1. ρ is called pure if it is a projector: ρ2 = ρ.
Pure states have rank one and are of the form ρ = |ψ⟩⟨ψ|.

Finally, the unitaries on H form the unitary group U(H) = U(d).
1In mathematics, this is called the Riesz representation theorem.
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The vector space End(H) of linear operators on H forms a Hilbert space of dimension (dimH) =
d2 in its own right with the Hilbert-Schmidt or trace inner product:

(X |Y) := tr(X†Y). (A.3)

In particular, we can introduce an orthonormal operator basis as a set of operators A1, . . . , Ad2 such
that (Ai |Aj) = δij. We will now introduce an import example of such a basis, the Pauli basis.

Example A.1: Pauli basis

Recall the Pauli operators

σ0,1 ≡ X =

(
0 1
1 0

)
, σ1,1 ≡ Y =

(
0 −i
i 0

)
, σ1,0 ≡ Z =

(
1 0
0 −1

)
, (A.4)

which we complement with the identity σ0,0 = 1. Then, the multi-qubit Pauli operators
on H = (C2)⊗n are simply given by all possible tensor products of the single-qubit Pauli
operators, in formula:

σa := σa1,a2 ⊗ · · · ⊗ σa2n−1,a2n , a ∈ Z2n
2 . (A.5)

Pauli operators are orthogonal, (σa |σb) = 2nδa,b . In particular, the normalized Pauli oper-
ators σ̂a = 2−n/2σa form an orthonormal operator basis. Note that Pauli operators can be
generalized to arbitary dimensions and they give rise to an orthonormal operator basis in
any of those.

We leave it as an exercise to show some basic properties of Pauli operators.

Exercise A.1 (Properties of Pauli operators). Using the definition of Pauli operators, Eq. (A.5), show the
following properties:

(a) σ†
a = σa and σ2

a = 1, i.e. the multi-qubit Pauli operators are both Hermitian and unitary.

(b) σaσb ∝ σa+b, where addition is in Z2n
2 , i.e. modulo two.

(c) σaσb = (−1)[a,b]σbσa where [a, b] := ∑n
i=1 aibn+i + an+ibi.

(d) (σa |σb) = 2nδa,b.

Superoperators and quantum channels Following a common nomenclature, we refer to linear
maps ϕ : L(H) → L(H) as superoperators (on H). We call ϕ positivity-preserving or simply posi-
tive iff ϕ(A) ≥ 0 for all A ≥ 0. As it turns out, positive maps are not necessarily positive when we
let them act on a subsystem of a composite system, i.e. if we consider ϕ ⊗ idA for some auxillary
system A. Thus, we say that ϕ is completely positive iff ϕ ⊗ idA is positive for any auxillary system A.
Completely positive maps are the ones which we consider ‘physical’, as the map quantum states to
quantum states. This leads us to the definition of a quantum channel:

Definition A.2 (Quantum channel). A quantum channel is a superoperator ϕ that is completely positive
and trace-preserving, this is ϕ ⊗ idA is positive for any auxillary system A and tr(ϕ(A)) = tr(A) for all
A ∈ L(H). We call ϕ unital iff ϕ(1) = 1.
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Example A.2: Quantum channels

Some examples of quantum channels are the following:

• Unitary channels: ϕ(X) = UXU† for U ∈ U(H).

• Mixed-unitary channels: ϕ(X) = ∑i λiUiXU†
i for Ui ∈ U(H), λi ≥ 0, and ∑i λi = 1.

These are convex combinations of unitary channels.

• Dephasing channel: ϕ(X) = ∑x⟨x |X |x⟩|x⟩⟨x|.

• Reset channels: ϕ(X) = tr(X)ρ for a fixed quantum state ρ.

To denote superoperators, it is handy to introduce an ‘operator Dirac notation’ as follows: In
analogy to the usual Dirac notation, we use the Hilbert-Schmidt inner product to define operator kets
and bras by |Y) ≡ Y and (X| : Y 7→ (X |Y). Likewise, we can define outer products |X)(Y| which are
now linear maps on L(H), i.e. superoperators, acting as A 7→ (Y |A)X.

The ‘operator bra-ket notation’ is especially useful to expand a superoperator in an operator basis,
i.e. write down its matrix representation. Typically, we will use the (normalized) Pauli basis in this
context, but any orthonormal basis works similarly. To this end, we observe that id = ∑a|σ̂a )( σ̂a| and
thus

ϕ = ∑
a,b
|σ̂a)(σ̂a |ϕ | σ̂b)(σ̂b| =: ∑

a,b
ϕa,b|σ̂a )( σ̂b| (A.6)

The matrix (ϕa,b)a,b is the representation of ϕ in the Pauli basis. For quantum channels, this matrix
has certain properties, which we here leave as an exercise:

Exercise A.2. Let ϕ be a multi-qubit quantum channel and let (ϕa,b)a,b be its matrix representation in the
Pauli basis. Show that

(a) (ϕa,b)a,b is real.

(b) ϕa,0 = δa,0. If ϕ is unital, it also holds ϕ0,b = δ0,b, hence ϕ ≃
(

1 0
0 ∗

)
.

(c) Suppose ϕ is a Pauli channel, this is ϕ(X) = ∑a λaσaXσ†
a (for convex coefficients λa). Then, (ϕa,b)a,b

is diagonal (use Ex. A.1).

Norms Throughout this paper, we use Schatten p-norms which are defined for any linear map X ∈
L(V ,W) between Hilbert spaces V and W and p ∈ [1, ∞] as

∥X∥p :=
(

tr|X|p
) 1

p
=

(
d

∑
i=1

σ
p
i

) 1
p

, (A.7)

where |X| :=
√

X†X ∈ L(V) and σi ≥ 0 are the singular values of X, i.e. the square roots of the
eigenvalues of the positive semidefinite operator X†X. In particular, we use the trace norm p = 1, the
Hilbert-Schmidt norm p = 2, and the spectral norm p = ∞. The definition of Schatten norms only relies
on the Hilbert space structure of the underlying vector space, thus these norms can be defined for
operators and superoperators alike.

A.2 Non-orthonormal bases

Let ( fi)i∈[d] be a basis of a Hilbert space V . Thus, every v ∈ V has a unique expansion v = ∑i vi fi.
If ( fi)i is orthonormal, then the coefficients vi can be simply expressed as vi = ⟨ fi |v⟩. This can be
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generalized to arbitrary bases by introducing the concept of a dual basis ( f̃i)i which is defined by the
linear system of equations

⟨ f̃i | f j⟩ = δi,j . (A.8)

As ( fi)i is a basis, this system has a unique solution. It is now straightforward to verify that

⟨ f̃i |v⟩ = ∑
j

vj⟨ f̃i | f j⟩ = vi . (A.9)

Moreover, this implies that (
∑

i
| fi ⟩⟨ f̃i|

)
(v) = ∑

i
vi fi = v , (A.10)

for all v ∈ V and hence ∑i| fi ⟩⟨ f̃i| = idV .
The dual basis can be computed using the Gram matrix

Gi,j := ⟨vi |vj⟩ . (A.11)

One can show that G is generally positive semi-definite and since the vi are linearly independent, the
eigenvalues are in fact strictly larger than zero. Hence, it is invertible and we define its inverse as
W := G−1. Then, the dual basis can be expressed as

ṽi := ∑
j

Wi,jvj . (A.12)

Indeed:
⟨ṽi |vj⟩ = ∑

k
Wi,k⟨vk |vj⟩ = ∑

k
Wi,kGk,j = δi,j . (A.13)
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