## QUANTUM INFORMATION METHODS FOR MANY-BODY PHYSICS

Xhek Turkeshi, Markus Heinrich

#### Exercise Sheet 3: Anticoncentration of Haar ensemble Due: 21 May, 10:00

Uniformly distributed states in the Hilbert space of *N* qudit are expected to be widely spread in any basis. This notion, denoted anticoncentration, is at the heart of several applications in quantum many-body systems, from conceptual problems to applications. In this exercise sheet, we will recover the moment of the overlap distribution  $p_x = |\langle x | \Psi \rangle|^2$  for  $\Psi = U | 0 \rangle$  random states generated by a Haar unitary distributed matrix  $U \in U(d^N)$ . The probability of the overlaps  $p_x$ , formally defined by

$$\mathcal{P}(w) = \mathbb{E}_{x \in \mathcal{B}} \mathbb{E}_{U \in \mathcal{U}(d^N)} \left[ \delta(w - |\langle x | \Psi 
angle|^2 
ight]$$
 ,

is a distribution of distribution and is given by the Porter-Thomas distribution. We will recover this from the knowledge of all the moments.

#### **1** Expression of the moments (3 P)

Use the properties of the  $\delta$ -function to express the moments

$$I_k \equiv \int_{-\infty}^{\infty} dw \; w^k \mathcal{P}(w) \;, \tag{1}$$

in terms of the amplitude. Express this quantity as the trace  $I_k = tr(AM_k(B))$ : who are A and B?

### 2 First and second moment (2 P)

Compute the first moment  $I_1$  and  $I_2$  explicitly, recalling the Weingarten fundamental expression for generic  $k \ge 1$ 

$$\mathbf{M}_{k}(B) = \sum_{\sigma, \tau \in \mathbf{S}_{k}} \mathbf{W} \mathbf{g}_{\sigma, \tau}(d) T_{\sigma} \operatorname{tr}(T_{\tau}^{\dagger}B) .$$
<sup>(2)</sup>

### 3 Generic moments (3 P)

Write the explicit value of  $I_k$  for generic moments. *Hint: from the previous exercise, you should have noticed already that the computation is easier then necessary because*  $\operatorname{tr}(R_{\sigma}|0\rangle\langle 0|^k) = \spadesuit$  *a simple value for any permutation. What is*  $\blacklozenge$ ?

#### 4 Generating function and Porter-Thomas distibution(3 P)

From the knowledge of all the moments, you can compute the generating function

$$F(z) = \sum_{k=0}^{\infty} (-z)^k \frac{I_k}{k!}$$
(3)

which is nothing but the Laplace transform of P(w), namely  $F(z) = \int dw P(w)e^{-zw}$ . Use the inverse Laplace transform to obtain the P(w).

# 5 [Optional] A less trivial computation (4 P)

Compute the expectation value

$$\Xi_k = \mathbb{E}[|\langle 1|U|0\rangle|^{2k}|\langle 0|U|0\rangle|^{2k}], \qquad (4)$$

For this: (i) write  $\Xi_k = \text{tr}(AM_k(B))$  in terms of *A* and *B* to be determined. Who are these operators? (ii) Apply the Weingarten form of  $M_k$ , and reduce this to something like  $\propto \sum_{\sigma \in S_k} \text{tr}(T_{\sigma}A)$ . (iii) Evaluate explicitly the final expression for k = 1 and k = 2. Can you guess the generic expression for any *k*?